论文标题

对拉普拉斯操作员的第一个特征值1型,用于紧凑的内部对称空间

A Remark on the First Eigenvalue of the Laplace Operator on 1-forms for Compact Inner Symmetric Spaces

论文作者

Milhorat, Jean-Louis

论文摘要

我们指出的是,在紧凑的内部对称空间$ g/k $上,由$ g $签名的杀戮形式给出的riemmannian指标,第一个(非零)特征值$ 1 $ - 形式是$ forms $ 1 $ - 是$ G的最高; 短的。得出了第一个(非零)特征值在功能上的一些结果。这是对预印本的第一个版本的修订:已经审查了有关功能频谱的不正确陈述。

We remark that on a compact inner symmetric space $G/K$, indowed with the Riemmannian metric given by the Killing form of $G$ signed-changed, the first (non-zero) eigenvalue of the Laplace operator on $1$-forms is the Casimir eigenvalue of the highest either long or short root of $G$, according as the highest weight of the isotropy representation is long or short. Some results for the first (non-zero) eigenvalue on functions are derived. This is a revision of the first version of the preprint: a non correct statement about the spectrum on functions has been reviewed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源