论文标题
$(D+1)的可扩展实现,$ d $二维量子密钥分布
Scalable implementation of $(d+1)$ mutually unbiased bases for $d$-dimensional quantum key distribution
论文作者
论文摘要
高维量子密钥分布(QKD)可以提高错误率容忍度和秘密密钥率。许多$ d $维QKD都使用了两个相互无偏的基础(MUB),而$(d+1)$ MUBS启用了更强大的QKD,尤其是针对相关错误。但是,尚未实现可扩展的实现,因为即使对于两个MUB,设置也需要$ D $设备,或者在特定的光学模式下使用灵活的转换器。在这里,我们建议使用$ \ log_p d $干涉仪在Prime Power Dimensions $ d = p^n $的$(D+1)$ MUBS的可扩展和一般实现。我们实施了时间固定状态的设置,并观察到相位基础的平均错误率为3.8%,低于针对连贯攻击的安全QKD所需的23.17%,$ d = 4 $。
A high-dimensional quantum key distribution (QKD) can improve error rate tolerance and the secret key rate. Many $d$-dimensional QKDs have used two mutually unbiased bases (MUBs), while $(d+1)$ MUBs enable a more robust QKD, especially against correlated errors. However, a scalable implementation has not been achieved because the setups have required $d$ devices even for two MUBs or a flexible convertor for a specific optical mode. Here, we propose a scalable and general implementation of $(d+1)$ MUBs using $\log_p d$ interferometers in prime power dimensions $d=p^N$. We implemented the setup for time-bin states and observed an average error rate of 3.8% for phase bases, which is lower than the 23.17% required for a secure QKD against coherent attack in $d=4$.