论文标题

具有局部lipschitz系数的泊松方程和随机微分方程的时间平均,通过强指数稳定性平均

Poisson Equations with locally-Lipschitz coefficients and Uniform in Time Averaging for Stochastic Differential Equations via Strong Exponential Stability

论文作者

Crisan, Dan, Dobson, Paul, Goddard, Ben, Ottobre, Michela, Souttar, Iain

论文摘要

我们研究随机微分方程(SDE)和泊松方程的平均值。对于具有超线性增长系数的完全耦合的SDE模型,我们成功地获得了时间(UIT)平均结果(UIT)平均结果。这是本文的主要结果,据我们所知,这是第一个以速率的UIT多尺度结果。文献中很少有UIT平均结果,它们几乎仅适用于普通微分方程的多尺度系统。在这少数几个中,我们都不知道的那些都没有收敛速度。该结果的UIT性质以及主要定理给出的收敛速率,使其成为一系列应用的理论基础,例如用于统计方法论,分子动力学等的适用性。对于获得我们的UIT平均结果的关键,并且是启用该系数的超级线性增长的关键。我们将此属性称为强烈指数稳定(SES)。证明平均结果的分析方法我们需要研究与SDE动力学(快速组成部分的生成器)相关的泊松问题家族。众所周知,在非紧密状态空间中对泊松方程的研究非常困难,当前文献主要涵盖了偏微分方程(PDE)的系数(PDE)是有界或满足线性生长假设的情况。在本文中,我们将泊松方程在非紧密状态空间上处理可以超线性生长的系数。我们证明了如何使用SES不仅可以证明慢速系统的UIT结果,还可以克服对泊松问题分析的一些技术障碍,这也是独立的。

We study averaging for Stochastic Differential Equations (SDEs) and Poisson equations. We succeed in obtaining a uniform in time (UiT) averaging result, with a rate, for fully coupled SDE models with super-linearly growing coefficients. This is the main result of this paper and is, to the best of our knowledge, the first UiT multiscale result with a rate. Very few UiT averaging results exist in the literature, and they almost exclusively apply to multiscale systems of Ordinary Differential Equations. Among these few, none of those we are aware of comes with a rate of convergence. The UiT nature of this result and the rate of convergence given by the main theorem, make it important as theoretical underpinning for a range of applications, such as applications to statistical methodology, molecular dynamics etc. Key to obtaining both our UiT averaging result and to enable dealing with the super-linear growth of the coefficients is conquering exponential decay in time of the space-derivatives of appropriate Markov semigroups. We refer to this property as being Strongly Exponentially Stable (SES). The analytic approach to proving averaging results we take requires studying a family of Poisson problems associated with the generator of the (fast component of the) SDE dynamics. The study of Poisson equations in non-compact state space is notoriously difficult, with current literature mostly covering the case when the coefficients of the Partial Differential Equation (PDE) are either bounded or satisfy linear growth assumptions. In this paper we treat Poisson equations on non-compact state spaces for coefficients that can grow super-linearly. We demonstrate how SES can be employed not only to prove the UiT result for the slow-fast system but also to overcome some of the technical hurdles in the analysis of Poisson problems, which is of independent interest as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源