论文标题
安排COFLOWS,以最大程度地减少相同并行网络中的总加权完成时间
Scheduling Coflows for Minimizing the Total Weighted Completion Time in Identical Parallel Networks
论文作者
论文摘要
Coflow是最近提出的网络抽象,用于捕获数据中心中的通信模式。大数据中心中的Coflow调度问题是最重要的$ NP $ - hard问题之一。先前关于Coflow调度的研究主要集中在单切换模型上。但是,随着最近的技术发展,这种单核模型不再足够。本文考虑了相同的并行网络中的Coflow调度问题。相同的并行网络是基于并行运行的多个网络内核的体系结构。 Coflow可以被认为是可分裂的或不可分割的。可以通过不同的网络核来传输可划分的Coflow中的不同流动。考虑到可划分的Coflow调度问题,我们提出了一个$(6- \ frac {2} {m})$ - 近似算法,具有任意发布时间,以及$(5- \ frac {2} {M} {M} {M})$ - 近似 - 近似时间,没有释放时间,而$ m $ $ m $是网络芯的数量。另一方面,当Coflow不可分割时,我们建议使用任意发布时间的$(4M+1)$ - 近似算法,而没有发布时间的$(4M)$ - 近似值。
Coflow is a recently proposed network abstraction to capture communication patterns in data centers. The coflow scheduling problem in large data centers is one of the most important $NP$-hard problems. Previous research on coflow scheduling focused mainly on the single-switch model. However, with recent technological developments, this single-core model is no longer sufficient. This paper considers the coflow scheduling problem in identical parallel networks. The identical parallel network is an architecture based on multiple network cores running in parallel. Coflow can be considered as divisible or indivisible. Different flows in a divisible coflow can be transmitted through different network cores. Considering the divisible coflow scheduling problem, we propose a $(6-\frac{2}{m})$-approximation algorithm with arbitrary release times, and a $(5-\frac{2}{m})$-approximation without release time, where $m$ is the number of network cores. On the other hand, when coflow is indivisible, we propose a $(4m+1)$-approximation algorithm with arbitrary release times, and a $(4m)$-approximation without release time.