论文标题

大型电路模型的基于力量匹配的订单降低,扩展和不对称扩展的Krylov子空间

The Extended and Asymmetric Extended Krylov Subspace in Moment-Matching-Based Order Reduction of Large Circuit Models

论文作者

Stoikos, Pavlos, Garyfallou, Dimitrios, Floros, George, Evmorfopoulos, Nestor, Stamoulis, George

论文摘要

电路复杂性的快速增长使模型订单降低(MOR)成为有效模拟大型电路模型的关键推动因素。基于力矩匹配的MOR技术在还原过程中的简单性和计算性能而建立了很好的确定。但是,基于普通Krylov子空间的矩匹配方法通常不足以准确近似原始电路行为,同时也不会根据需要产生紧凑的降级模型。在本文中,我们提出了一种矩匹配方法,该方法利用了扩展和不对称扩展的Krylov子空间(EKS和AEKS),而它允许对传输函数的并行计算来处理具有许多终端的循环。所提出的方法可以处理大规模的常规和奇异电路,并为电路模拟生成准确有效的降低阶模型。工业IBM功率网格的实验结果表明,EKS方法可以在标准的Krylov子空间方法上实现误差降低高达85.28%,而AEKS方法大大降低了EKS的运行时间,在减少误差中引入了可忽略的开销。

The rapid growth of circuit complexity has rendered Model Order Reduction (MOR) a key enabler for the efficient simulation of large circuit models. MOR techniques based on moment-matching are well established due to their simplicity and computational performance in the reduction process. However, moment-matching methods based on the ordinary Krylov subspace are usually inadequate to accurately approximate the original circuit behavior, and at the same time do not produce reduced-order models as compact as needed. In this paper, we present a moment-matching method which utilizes the extended and the asymmetric extended Krylov subspace (EKS and AEKS), while it allows the parallel computation of the transfer function in order to deal with circuits that have many terminals. The proposed method can handle large-scale regular and singular circuits and generate accurate and efficient reduced-order models for circuit simulation. Experimental results on industrial IBM power grids demonstrate that the EKS method can achieve an error reduction up to 85.28% over a standard Krylov subspace method, while the AEKS method greatly reduces the runtime of EKS, introducing a negligible overhead in the reduction error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源