论文标题

关于由$ x^{2^u \ cdot 3^v \ cdot 5^t} -m $定义的某些纯数字段的单基因

On monogenity of certain pure number fields defined by $x^{2^u\cdot 3^v\cdot 5^t}-m$

论文作者

Fadil, Lhoussain El

论文摘要

令$ k = \ mathbb {q}(α)$为纯数字段,由一个不可约的多项式$ f(x)= x^{2^u \ cdot 3^v \ cd \ cdot 5^t} -m $,带有$ m \ neq \ neq \ neq \ neq \ pm 1 $ $ $ $ $ $ $ $ $ $ $ uneg和$ u u u u u u,$ u u u u u u,$ u u u u u,$ u u u u u,$ u u u,在本文中,我们研究了$ k $的单基因。我们证明,如果$ m \ not \ equiv 1 \ md4 $,$ m \ not \ equiv \ pm 1 \ md9 $,而$ m \ not \ in \ in \ {\ pm 1,\ pm 7 \ pm 7 \} \ md {25} $,那么$ k $是单一的。但是,如果{$ m \ equiv 1 \ md {4} $}或$ m \ equiv 1 \ md9 $或$ m \ equiv -1 \ md9 $ and $ u = 2k $ for某些奇数$ k $或$ k $或$ u \ u \ ge 2 $ and $ m \ equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv equiv an $ u = 2k $对于某些奇数$ k $或$ u = v = 1 $和$ m \ equiv \ pm 82 \ md {5^4} $,然后$ k $不是单基因。

Let $K = \mathbb{Q} (α) $ be a pure number field generated by a root $α$ of a monic irreducible polynomial $ F(x) = x^{2^u\cdot 3^v\cdot 5^t}-m$, with $ m \neq \pm 1 $ a square free rational integer, $u$, $v$ and $t$ three positive integers. In this paper, we study the monogenity of $K$. We prove that if $m\not\equiv 1\md4$, $m\not\equiv \pm 1\md9$, and $m\not\in\{\pm 1, \pm 7\}\md{25}$, then $K$ is monogenic. But if {$m\equiv 1\md{4}$} or $m\equiv 1\md9$ or $m\equiv -1\md9$ and $u=2k$ for some odd integer $k$ or $u\ge 2$ and $m\equiv 1\md{25}$ or $m\equiv -1\md{25}$ and $u=2k$ for some odd integer $k$ or $u=v=1$ and $m\equiv \pm 82\md{5^4}$, then $K$ is not monogenic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源