论文标题

关于离散时间非线性控制的迭代线性二次优化算法的全局和局部收敛

On Global and Local Convergence of Iterative Linear Quadratic Optimization Algorithms for Discrete Time Nonlinear Control

论文作者

Roulet, Vincent, Srinivasa, Siddhartha, Fazel, Maryam, Harchaoui, Zaid

论文摘要

在有限的地平线上解决离散时间非线性控制的经典方法是反复最大程度地减少当前候选解决方案周围原始问题的线性二次近似。尽管在许多领域中广受欢迎,但这种方法主要是在本地分析的。我们为迭代线性二次调节器(ILQR)算法提供详细的收敛保证以及固定点以及局部线性收敛速率及其差异动态编程(DDP)变体。对于没有控制变量成本而没有成本的问题,我们观察到,只要线性化离散时间动态是汇总的,状态变量的成本占主导地位,则可以确保全球融合到最小值。当成本是自我协议时,我们将进一步详细介绍二次本地融合。我们表明,鉴于存在反馈线性化方案,线性化动力学的溢流性对于适当的离散方案具有。我们通过广泛的高斯 - 纽顿方法的镜头基于线性二次近似值呈现算法的复杂性界限。我们的分析发现了常规化的高斯牛顿算法的几个收敛阶段。

A classical approach for solving discrete time nonlinear control on a finite horizon consists in repeatedly minimizing linear quadratic approximations of the original problem around current candidate solutions. While widely popular in many domains, such an approach has mainly been analyzed locally. We provide detailed convergence guarantees to stationary points as well as local linear convergence rates for the Iterative Linear Quadratic Regulator (ILQR) algorithm and its Differential Dynamic Programming (DDP) variant. For problems without costs on control variables, we observe that global convergence to minima can be ensured provided that the linearized discrete time dynamics are surjective, costs on the state variables are gradient dominated. We further detail quadratic local convergence when the costs are self-concordant. We show that surjectivity of the linearized dynamics hold for appropriate discretization schemes given the existence of a feedback linearization scheme. We present complexity bounds of algorithms based on linear quadratic approximations through the lens of generalized Gauss-Newton methods. Our analysis uncovers several convergence phases for regularized generalized Gauss-Newton algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源