论文标题

旋转盘系统中时空热通量的贝叶斯推断的深层替代延迟感受性HMC推断

Deep surrogate accelerated delayed-acceptance HMC for Bayesian inference of spatio-temporal heat fluxes in rotating disc systems

论文作者

Deveney, Teo, Mueller, Eike, Shardlow, Tony

论文摘要

我们引入了一种深度学习加速方法,以确保准确性解决基于PDE的贝叶斯逆问题。这是由于被推断出一个时空的热量频率参数(称为BIOT数量给定温度数据)的问题而动机,但是该方法可以推广到其他设置。为了加速贝叶斯推断,我们开发了一种新颖的训练方案,该方案使用数据适应训练神经网络替代物,以模拟参数远期模型。通过同时识别BIOT数量上的近似后验分布,并根据这一点加权物理学的训练损失,我们的方法无需外部解决方案即可向前和逆溶液近似求和溶液。使用随机的Chebyshev系列,我们概述了如何以前近似高斯过程,并且使用替代物我们使用汉密尔顿蒙特卡洛(HMC)从后分布中采样。随着我们的自适应损失接近零,我们将替代物后部促进到地狱林指标中的真实后验分布。此外,我们描述了如何将这种替代的HMC方法与传统的PDE求解器结合在延迟感知方案中以控制后验准确性。这克服了基于深度学习的替代方法的主要局限性,由于其非凸训练,A a无法实现AD-PRIORI的保证准确性。 Biot数量计算涉及涡轮机械设计,这是安全性至关重要且高度调节的,因此我们的结果必须具有这种数学保证,这一点很重要。我们的方法可以在高维度中快速混合,同时保留了传统PDE求解器的融合保证,并且没有评估该求解器的负担可能会被拒绝的建议。使用真实和模拟数据给出数值结果。

We introduce a deep learning accelerated methodology to solve PDE-based Bayesian inverse problems with guaranteed accuracy. This is motivated by the ill-posed problem of inferring a spatio-temporal heat-flux parameter known as the Biot number given temperature data, however the methodology is generalisable to other settings. To accelerate Bayesian inference, we develop a novel training scheme that uses data to adaptively train a neural-network surrogate simulating the parametric forward model. By simultaneously identifying an approximate posterior distribution over the Biot number, and weighting a physics-informed training loss according to this, our approach approximates forward and inverse solution together without any need for external solves. Using a random Chebyshev series, we outline how to approximate a Gaussian process prior, and using the surrogate we apply Hamiltonian Monte Carlo (HMC) to sample from the posterior distribution. We derive convergence of the surrogate posterior to the true posterior distribution in the Hellinger metric as our adaptive loss approaches zero. Additionally, we describe how this surrogate-accelerated HMC approach can be combined with traditional PDE solvers in a delayed-acceptance scheme to a-priori control the posterior accuracy. This overcomes a major limitation of deep learning-based surrogate approaches, which do not achieve guaranteed accuracy a-priori due to their non-convex training. Biot number calculations are involved in turbo-machinery design, which is safety critical and highly regulated, therefore it is important that our results have such mathematical guarantees. Our approach achieves fast mixing in high dimensions whilst retaining the convergence guarantees of a traditional PDE solver, and without the burden of evaluating this solver for proposals that are likely to be rejected. Numerical results are given using real and simulated data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源