论文标题
栅极可调石墨烯约瑟夫森参数放大器
A gate-tunable graphene Josephson parametric amplifier
论文作者
论文摘要
在大量的元素量子组件组合中,超导量子电路已导致微波量子光学元件的显着进步。在这些元素中,事实证明,量子限制的参数放大器对于量子系统的低噪声读数至关重要,量子系统的能量范围本质上很低(数十美元$ $ $ eV)。它们还用于生成非经典的光状态,这可能是量子增强检测的资源。超导参数放大器(例如量子位)通常利用约瑟夫森连接作为磁性可调性和无耗散的非线性的来源。近年来,已经努力将半导体弱环连接作为电气可调的非线性元件,并使用半导体纳米线,二维电子气体,碳纳米管和石墨烯进行了微波谐振器和量子钻头的演示。但是,鉴于平衡非线性,耗散,参与和能量量表的挑战,尚未使用半导体弱环节来实施参数放大器。在这里,我们演示了一个利用石墨烯约瑟夫森连接的参数放大器,并表明其工作频率可以通过栅极电压广泛调谐。我们报告收益超过20 dB,噪声性能接近标准量子限制。我们的结果完成了用于电气可调超导量子电路的工具集,并为开发量子技术(例如量子计算,量子传感和基本科学)提供了新的机会。
With a large portfolio of elemental quantum components, superconducting quantum circuits have contributed to dramatic advances in microwave quantum optics. Of these elements, quantum-limited parametric amplifiers have proven to be essential for low noise readout of quantum systems whose energy range is intrinsically low (tens of $μ$eV ). They are also used to generate non classical states of light that can be a resource for quantum enhanced detection. Superconducting parametric amplifiers, like quantum bits, typically utilize a Josephson junction as a source of magnetically tunable and dissipation-free nonlinearity. In recent years, efforts have been made to introduce semiconductor weak links as electrically tunable nonlinear elements, with demonstrations of microwave resonators and quantum bits using semiconductor nanowires, a two dimensional electron gas, carbon nanotubes and graphene. However, given the challenge of balancing nonlinearity, dissipation, participation, and energy scale, parametric amplifiers have not yet been implemented with a semiconductor weak link. Here we demonstrate a parametric amplifier leveraging a graphene Josephson junction and show that its working frequency is widely tunable with a gate voltage. We report gain exceeding 20 dB and noise performance close to the standard quantum limit. Our results complete the toolset for electrically tunable superconducting quantum circuits and offer new opportunities for the development of quantum technologies such as quantum computing, quantum sensing and fundamental science.