论文标题
用于对象发现的复杂值自动编码器
Complex-Valued Autoencoders for Object Discovery
论文作者
论文摘要
以对象为中心的表示是人类感知的基础,并使我们能够对世界进行推理,并系统地将其推广到新的环境。当前,大多数在无监督的对象发现上的作品集中在基于插槽的方法上,这些方法明确将单个对象的潜在表示分开。尽管结果很容易解释,但通常需要设计相关建筑的设计。与此相反,我们提出了一种相对简单的方法 - 复杂的自动编码器(CAE) - 创建分布式以对象为中心的表示。遵循对生物神经元中对象表示的理论的编码方案,其复杂值激活表示两个信息:它们的幅度表达了特征的存在,而神经元之间的相对相位差异应结合在一起以创建关节对象表示。与以前使用复杂值激活进行对象发现的方法相反,我们提出了一种完全无监督的方法,该方法是端到端训练的 - 导致了性能和效率的显着提高。此外,我们表明,与最先进的插槽方法相比,CAE在简单的多对象数据集上实现了竞争性或更好的无监督对象发现性能,同时训练的速度要快100倍。
Object-centric representations form the basis of human perception, and enable us to reason about the world and to systematically generalize to new settings. Currently, most works on unsupervised object discovery focus on slot-based approaches, which explicitly separate the latent representations of individual objects. While the result is easily interpretable, it usually requires the design of involved architectures. In contrast to this, we propose a comparatively simple approach - the Complex AutoEncoder (CAE) - that creates distributed object-centric representations. Following a coding scheme theorized to underlie object representations in biological neurons, its complex-valued activations represent two messages: their magnitudes express the presence of a feature, while the relative phase differences between neurons express which features should be bound together to create joint object representations. In contrast to previous approaches using complex-valued activations for object discovery, we present a fully unsupervised approach that is trained end-to-end - resulting in significant improvements in performance and efficiency. Further, we show that the CAE achieves competitive or better unsupervised object discovery performance on simple multi-object datasets compared to a state-of-the-art slot-based approach while being up to 100 times faster to train.