论文标题
平行成像的扫描特异性学习的多重量解释
Multi-Weight Respecification of Scan-specific Learning for Parallel Imaging
论文作者
论文摘要
并行成像被广泛用于磁共振成像作为加速技术。并行成像中的传统线性重建方法通常会出现噪声扩增。最近,用于K空间插值(RAKI)的非线性鲁棒人工神经网络表现出优于其他线性方法的较高噪声弹性。但是,Raki的性能高得多,并且需要大量的自动校准信号作为训练样本。为了解决这些问题,我们提出了一种多重量方法,该方法在不足的数据(称为MW-Raki)上实现多个加权矩阵。在测量结果上执行多个加权矩阵可以有效地减少噪声的影响并增加数据约束。此外,我们将多重加权矩阵的策略纳入了Raki的残留版本,并形成MW-Rraki。与替代方法的实验性比较表现出明显的更好的重建性能,尤其是在高加速度下。
Parallel imaging is widely used in magnetic resonance imaging as an acceleration technology. Traditional linear reconstruction methods in parallel imaging often suffer from noise amplification. Recently, a non-linear robust artificial-neural-network for k-space interpolation (RAKI) exhibits superior noise resilience over other linear methods. However, RAKI performs poorly at high acceleration rates, and needs a large amount of autocalibration signals as the training samples. In order to tackle these issues, we propose a multi-weight method that implements multiple weighting matrices on the undersampled data, named as MW-RAKI. Enforcing multiple weighted matrices on the measurements can effectively reduce the influence of noise and increase the data constraints. Furthermore, we incorporate the strategy of multiple weighting matrixes into a residual version of RAKI, and form MW-rRAKI.Experimental compari-sons with the alternative methods demonstrated noticeably better reconstruction performances, particularly at high acceleration rates.