论文标题
通过物联网和超越5G网络的机器学习的数字双虚拟化:安全性和最佳控制的研究方向
Digital Twin Virtualization with Machine Learning for IoT and Beyond 5G Networks: Research Directions for Security and Optimal Control
论文作者
论文摘要
数字双(DT)技术已成为使用物联网(IoT)网络可用的大量数据实时数据驱动的网络物理系统(CPS)的解决方案。在该立场论文中,我们阐明了DT框架的独特特征和能力,该特征和能力能够实现在线学习物理环境,对资产的实时监控,蒙特卡洛启发式搜索预测性预防,政策和非政策性强化学习。我们为DT框架建立了一个概念分层体系结构,并在云计算上分散实现,并由人工智能(AI)服务启用用于建模,事件检测和决策过程。 DT框架将控制函数分开,该功能将作为逻辑集中过程的系统部署到所控制的物理设备中,就像第五代(5G)无线网络中的软件定义网络(SDN)一样。我们讨论了DT框架的时刻,以促进基于网络的控制过程的实施及其对关键基础架构的影响。为了阐明DT在降低现有系统开发和部署创新技术的风险中的重要性,我们讨论了实施零信任体系结构(ZTA)作为将来数据驱动的通信网络中必要的安全框架的应用。
Digital twin (DT) technologies have emerged as a solution for real-time data-driven modeling of cyber physical systems (CPS) using the vast amount of data available by Internet of Things (IoT) networks. In this position paper, we elucidate unique characteristics and capabilities of a DT framework that enables realization of such promises as online learning of a physical environment, real-time monitoring of assets, Monte Carlo heuristic search for predictive prevention, on-policy, and off-policy reinforcement learning in real-time. We establish a conceptual layered architecture for a DT framework with decentralized implementation on cloud computing and enabled by artificial intelligence (AI) services for modeling, event detection, and decision-making processes. The DT framework separates the control functions, deployed as a system of logically centralized process, from the physical devices under control, much like software-defined networking (SDN) in fifth generation (5G) wireless networks. We discuss the moment of the DT framework in facilitating implementation of network-based control processes and its implications for critical infrastructure. To clarify the significance of DT in lowering the risk of development and deployment of innovative technologies on existing system, we discuss the application of implementing zero trust architecture (ZTA) as a necessary security framework in future data-driven communication networks.