论文标题
Shail:在城市环境中自动驾驶的安全意识层次对抗性模仿学习
SHAIL: Safety-Aware Hierarchical Adversarial Imitation Learning for Autonomous Driving in Urban Environments
论文作者
论文摘要
为自动驾驶汽车设计一个安全和人类的决策系统是一项艰巨的任务。生成模仿学习是通过利用现实世界和模拟决策来自动化政策构建的一种可能方法。将生成模仿学习用于自主驾驶政策的先前工作着重于学习简单设置的低级控制器。但是,为了扩展复杂的设置,许多自主驾驶系统将固定,安全,基于优化的低级控制器与高级决策逻辑相结合,以选择适当的任务和关联的控制器。在本文中,我们试图通过采用安全感知的层次对抗性模仿学习(SHAIL)来弥合这一差距,这是一种学习高级政策的方法,该方法以模仿低级驾驶数据的方式从一组低级控制器实例中选择。我们介绍了一个城市环形交易模拟器,该模拟器使用交互数据集中的真实数据来控制非EGO车辆。然后,我们从经验上证明,即使有了简单的控制器选项,我们的方法也可以产生比以前在驾驶员模仿中的方法更好的行为,这些方法难以扩展到复杂的环境。我们的实现可在https://github.com/sisl/interactionImition中获得。
Designing a safe and human-like decision-making system for an autonomous vehicle is a challenging task. Generative imitation learning is one possible approach for automating policy-building by leveraging both real-world and simulated decisions. Previous work that applies generative imitation learning to autonomous driving policies focuses on learning a low-level controller for simple settings. However, to scale to complex settings, many autonomous driving systems combine fixed, safe, optimization-based low-level controllers with high-level decision-making logic that selects the appropriate task and associated controller. In this paper, we attempt to bridge this gap in complexity by employing Safety-Aware Hierarchical Adversarial Imitation Learning (SHAIL), a method for learning a high-level policy that selects from a set of low-level controller instances in a way that imitates low-level driving data on-policy. We introduce an urban roundabout simulator that controls non-ego vehicles using real data from the Interaction dataset. We then demonstrate empirically that even with simple controller options, our approach can produce better behavior than previous approaches in driver imitation that have difficulty scaling to complex environments. Our implementation is available at https://github.com/sisl/InteractionImitation.