论文标题

3D Euler方程的涡流拉伸局部性

Locality of vortex stretching for the 3D Euler equations

论文作者

Shimizu, Yuuki, Yoneda, Tsuyoshi

论文摘要

我们考虑在以下情况下考虑3D不可压缩的Euler方程:小规模的涡旋斑点被规定的大规模固定流程拉伸。更确切地说,我们澄清了哪种大规模固定流真正伸展小规模的涡旋斑点,与紧张的方向保持一致。关键思想是构建拉格朗日坐标,以使谎言支架相同为零(C.F. Frobenius Theorem),并通过使用压力项来研究压力项的位置。

We consider the 3D incompressible Euler equations under the following situation: small-scale vortex blob being stretched by a prescribed large-scale stationary flow. More precisely, we clarify what kind of large-scale stationary flows really stretch small-scale vortex blobs in alignment with the straining direction. The key idea is constructing a Lagrangian coordinate so that the Lie bracket is identically zero (c.f. the Frobenius theorem), and investigate the locality of the pressure term by using it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源