论文标题
使用量子近似优化算法的肽构象采样
Peptide conformational sampling using the Quantum Approximate Optimization Algorithm
论文作者
论文摘要
蛋白质折叠 - 鉴于其氨基酸序列预测蛋白质的空间结构的问题 - 近几十年来吸引了大量的生物化学研究工作。在这项工作中,我们探讨了量子计算解决简化版本的蛋白质折叠版本的潜力。更确切地说,我们从数值上研究了变异量子算法的性能,即量子近似优化算法(QAOA),在采样短肽的低能构象中。我们首先基准在一个更简单的问题上对算法进行基准测试:采样自我避免步行,这是有效蛋白质构象的必要条件。通过QAOA在此问题上取得的有希望的结果的激励,然后我们将算法应用于更完整的蛋白质折叠版本,包括简化的物理潜力。在这种情况下,基于对20粒量子位的数值模拟,我们发现的结果较少:需要深量子电路才能获得准确的结果,并且可以通过随机采样到小开销来匹配QAOA的性能。总体而言,这些结果对QAOA在短期内解决蛋白质折叠问题的能力引起了严重的怀疑,即使在极为简化的环境中也是如此。我们认为,这项工作中提出的方法和结论可以为如何系统地评估蛋白质折叠以外的现实世界问题的变性量子优化算法提供宝贵的方法论见解。
Protein folding -- the problem of predicting the spatial structure of a protein given its sequence of amino-acids -- has attracted considerable research effort in biochemistry in recent decades. In this work, we explore the potential of quantum computing to solve a simplified version of protein folding. More precisely, we numerically investigate the performance of a variational quantum algorithm, the Quantum Approximate Optimization Algorithm (QAOA), in sampling low-energy conformations of short peptides. We start by benchmarking the algorithm on an even simpler problem: sampling self-avoiding walks, which is a necessary condition for a valid protein conformation. Motivated by promising results achieved by QAOA on this problem, we then apply the algorithm to a more complete version of protein folding, including a simplified physical potential. In this case, based on numerical simulations on 20 qubits, we find less promising results: deep quantum circuits are required to achieve accurate results, and the performance of QAOA can be matched by random sampling up to a small overhead. Overall, these results cast serious doubt on the ability of QAOA to address the protein folding problem in the near term, even in an extremely simplified setting. We believe that the approach and conclusions presented in this work could offer valuable methodological insights on how to systematically evaluate variational quantum optimization algorithms on real-world problems beyond protein folding.