论文标题
全局$ n_ \ infty $ -operads
Global $N_\infty$-operads
论文作者
论文摘要
我们在全球层次的设置中定义$ n_ \ infty $ -operads,并对其进行完全分类。这些全球$ n_ \ infty $ -operads模型在全球世界中的模型级别的中间水平,i。 e。在所有紧凑型谎言组都具有兼容动作的环境中。我们通过在全局$ n_ \ infty $ -operads和部分订购的全局传输系统集合之间给出等价,对全局$ n_ \ infty $ -operads进行分类,这是更简单的代数对象。我们还探讨了全球$ n_ \ infty $ -operads和$ n_ \ infty $ -operads,该组最近由Blumberg和Hill推出。我们结果的一个有趣的结果是,并非所有eprovariant $ n_ \ indy $ operads都可以作为对全局$ n_ \ indy $ operads的限制而出现的。
We define $N_\infty$-operads in the globally equivariant setting and completely classify them. These global $N_\infty$-operads model intermediate levels of equivariant commutativity in the global world, i. e. in the setting where objects have compatible actions by all compact Lie groups. We classify global $N_\infty$-operads by giving an equivalence between the homotopy category of global $N_\infty$-operads and the partially ordered set of global transfer systems, which are much simpler, algebraic objects. We also explore the relation between global $N_\infty$-operads and $N_\infty$-operads for a single group, recently introduced by Blumberg and Hill. One interesting consequence of our results is the fact that not all equivariant $N_\infty$-operads can appear as restrictions of global $N_\infty$-operads.