论文标题

StückelbergVector Bosons的有效现场理论

Effective Field Theory of Stückelberg Vector Bosons

论文作者

Kribs, Graham D., Lee, Gabriel, Martin, Adam

论文摘要

我们探索具有stückelberg质量的矢量场$ x^μ$的有效场理论。 $ x^μ$的缺失量规对称性意味着Lorentz-Invariant操作员直接从$ X^μ$构建。除了动力学和质量术语之外,允许在可纠正的级别上进行交互,还包括$x_μx^μh^\匕首h $,$(x_μx^μ)^2 $和$x_μj^μ$,其中$ j^μ$是SM的全球范围或隐藏扇区的全球电流。我们表明,所有这些相互作用导致散射幅度,这些振幅以$ \ sqrt {s}/m_x $的功率生长,除了$x_μj^μ$的情况下,其中$ j^μ$是一种非反态的全局电流。当$ x $被识别为耦合到电磁电流的深色光子时,后者是众所周知的,通常以$ x $和光子之间的动力学混合而等效地写入。通过隔离纵向增强,可以促进散射幅度能量生长的功率计算。我们详细检查了与异常的全局矢量电流$x_μj_{anom}^μ$的相互作用,仔细隔离了对费米昂三角图的有限贡献。我们计算纵向增强的观察力$ z \ rightArrowxγ$(当$ m_x <m_z $),$ f \ bar {f} \ rightArrowxγ$和$zγ\ tozγ$当$ x $ coupers to baryon number当前。通过编写$ x^μ= a^μ-\ partial^μπ/m_x $引入假规范的不变性,与$a_μj_{anom}^μ$相关的可能的量规异常被$ J_ {anom}^μ$被$ j_ {anom} anoM}^μ\partial_μx/m_x $;这是工作中的四维绿色绿色异常策略机制。我们的分析表明,没有通过吸引Stückelberg来获得矢量场的免费午餐:避免黑暗希格斯行业所支付的价格被斯特克尔伯格矢量领域的非通用相互作用集所取代,必须避免随着能量而增长的幅度。

We explore the effective field theory of a vector field $X^μ$ that has a Stückelberg mass. The absence of a gauge symmetry for $X^μ$ implies Lorentz-invariant operators are constructed directly from $X^μ$. Beyond the kinetic and mass terms, allowed interactions at the renormalizable level include $X_μX^μH^\dagger H$, $(X_μX^μ)^2$, and $X_μj^μ$, where $j^μ$ is a global current of the SM or of a hidden sector. We show that all of these interactions lead to scattering amplitudes that grow with powers of $\sqrt{s}/m_X$, except for the case of $X_μj^μ$ where $j^μ$ is a nonanomalous global current. The latter is well-known when $X$ is identified as a dark photon coupled to the electromagnetic current, often written equivalently as kinetic mixing between $X$ and the photon. The power counting for the energy growth of the scattering amplitudes is facilitated by isolating the longitudinal enhancement. We examine in detail the interaction with an anomalous global vector current $X_μj_{anom}^μ$, carefully isolating the finite contribution to the fermion triangle diagram. We calculate the longitudinally-enhanced observables $Z \rightarrow Xγ$ (when $m_X < m_Z$), $f\bar{f} \rightarrow X γ$, and $Zγ\to Zγ$ when $X$ couples to the baryon number current. Introducing a fake gauge-invariance by writing $X^μ= A^μ- \partial^μπ/m_X$, the would-be gauge anomaly associated with $A_μj_{anom}^μ$ is canceled by $j_{anom}^μ\partial_μπ/m_X$; this is the four-dimensional Green-Schwarz anomaly-cancellation mechanism at work. Our analysis suggests there is no free lunch by appealing to Stückelberg for the mass of a vector field: the price paid for avoiding a dark Higgs sector is replaced by the non-generic set of interactions that the Stückelberg vector field must have to avoid amplitudes that grow with energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源