论文标题
二次神经元授权的异质自动编码器,用于无监督异常检测
Quadratic Neuron-empowered Heterogeneous Autoencoder for Unsupervised Anomaly Detection
论文作者
论文摘要
受到生物神经元的复杂性和多样性的启发,提出了二次神经元,以简化的二次功能替代当前神经元中的内部产物。采用这种新型神经元类型的神经元为发展深度学习提供了新的观点。在分析二次神经元时,我们发现存在一个功能,使得异质网络可以与多项式数量的神经元近似近似,但是纯粹的常规或二次网络需要指数级的神经元来达到相同级别的误差。在异质网络上的这种鼓舞人心的理论结果的鼓励下,我们直接将常规和二次神经元整合在自动编码器中,以制造一种新型的异质自动编码器。据我们所知,这是第一个由不同类型的神经元制成的异质自动编码器。接下来,我们将提出的异质自动编码器应用于表格数据和轴承故障信号的无监督异常检测。异常检测面临的困难,例如数据未知性,异常特征异质性和特征性不足,这适用于提议的异质自动编码器。它的高特征表示能力可以表征各种异常数据(异质性),将异常与正常(无污染性)区分开,并准确地了解正常样本的分布(未知性)。实验表明,与其他最先进的模型相比,异质自动编码器的性能性能竞争性。
Inspired by the complexity and diversity of biological neurons, a quadratic neuron is proposed to replace the inner product in the current neuron with a simplified quadratic function. Employing such a novel type of neurons offers a new perspective on developing deep learning. When analyzing quadratic neurons, we find that there exists a function such that a heterogeneous network can approximate it well with a polynomial number of neurons but a purely conventional or quadratic network needs an exponential number of neurons to achieve the same level of error. Encouraged by this inspiring theoretical result on heterogeneous networks, we directly integrate conventional and quadratic neurons in an autoencoder to make a new type of heterogeneous autoencoders. To our best knowledge, it is the first heterogeneous autoencoder that is made of different types of neurons. Next, we apply the proposed heterogeneous autoencoder to unsupervised anomaly detection for tabular data and bearing fault signals. The anomaly detection faces difficulties such as data unknownness, anomaly feature heterogeneity, and feature unnoticeability, which is suitable for the proposed heterogeneous autoencoder. Its high feature representation ability can characterize a variety of anomaly data (heterogeneity), discriminate the anomaly from the normal (unnoticeability), and accurately learn the distribution of normal samples (unknownness). Experiments show that heterogeneous autoencoders perform competitively compared to other state-of-the-art models.