论文标题

Banach空间上的符号形式

Symplectic forms on Banach spaces

论文作者

Castillo, Jesús M. F., Cuellar, Wilson, Ortiz, Manuel González, Pino, Raúl

论文摘要

我们通过表明所有高阶Rochgberg Spaces $ \ Mathfrak r^{(n)} $ is Sympletic Banach空间,没有Lagrangian子空间,扩展并概括了Kalton和Swanson($ Z_2 $是一个没有Lagrangian子空间的符号Banach空间)。偶数空间上的非平凡符号结构是由自然二元性引起的。而奇数空间上的非平凡符号结构需要具有复杂结构的扰动。我们还将研究一般Banach空间上的合成结构,并在复杂结构的意外出现中引起的,我们引入和研究几乎是合成结构。

We extend and generalize the result of Kalton and Swanson ($Z_2$ is a symplectic Banach space with no Lagrangian subspace) by showing that all higher order Rochgberg spaces $\mathfrak R^{(n)}$ are symplectic Banach spaces with no Lagrangian subspaces. The nontrivial symplectic structure on even spaces is the one induced by the natural duality; while the nontrivial symplectic structure on odd spaces requires perturbation with a complex structure. We will also study symplectic structures on general Banach spaces and, motivated by the unexpected appearance of complex structures, we introduce and study almost symplectic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源