论文标题

基线MRI的多发性硬化症中未来病变活性和治疗效果的个性化预测

Personalized Prediction of Future Lesion Activity and Treatment Effect in Multiple Sclerosis from Baseline MRI

论文作者

Durso-Finley, Joshua, Falet, Jean-Pierre R., Nichyporuk, Brennan, Arnold, Douglas L., Arbel, Tal

论文摘要

诸如多发性硬化症(MS)等慢性疾病的精密医学涉及选择一种治疗方法,该治疗能够最好地平衡疗效和副作用/偏好。尽早做出这种选择很重要,因为寻找有效疗法的延迟可能会导致不可逆转的残疾应计。为此,我们介绍了第一个针对MS患者的基线磁共振成像(MRI)(MRI)(MRI)(MRI)(MRI)的第一个深层神经网络模型。我们的模型(a)预测了未来的新的和扩大的T2加权(NE-T2)病变对多种治疗的随访MRI计数,并且(b)估计有条件的平均治疗效果(CATE),如预测的未来抑制NE-T2病变(在不同治疗方案之间)的预测所定义。我们的模型在四个多中心随机临床试验中从MS患者中获得的1817个多序列MRI的专有联合数据集进行了验证。我们的框架在五种不同治疗方法上对未来NE-T2病变的二进化回归中的平均精度高,确定了异质治疗效果,并提供了个性化的治疗建议,以说明与治疗相关的风险(例如副作用,患者偏好,管理困难)。

Precision medicine for chronic diseases such as multiple sclerosis (MS) involves choosing a treatment which best balances efficacy and side effects/preferences for individual patients. Making this choice as early as possible is important, as delays in finding an effective therapy can lead to irreversible disability accrual. To this end, we present the first deep neural network model for individualized treatment decisions from baseline magnetic resonance imaging (MRI) (with clinical information if available) for MS patients. Our model (a) predicts future new and enlarging T2 weighted (NE-T2) lesion counts on follow-up MRI on multiple treatments and (b) estimates the conditional average treatment effect (CATE), as defined by the predicted future suppression of NE-T2 lesions, between different treatment options relative to placebo. Our model is validated on a proprietary federated dataset of 1817 multi-sequence MRIs acquired from MS patients during four multi-centre randomized clinical trials. Our framework achieves high average precision in the binarized regression of future NE-T2 lesions on five different treatments, identifies heterogeneous treatment effects, and provides a personalized treatment recommendation that accounts for treatment-associated risk (e.g. side effects, patient preference, administration difficulties).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源