论文标题

通过单像深度估计监视社会距离

Monitoring social distancing with single image depth estimation

论文作者

Mingozzi, Alessio, Conti, Andrea, Aleotti, Filippo, Poggi, Matteo, Mattoccia, Stefano

论文摘要

最近的大流行紧急情况提出了许多旨在遏制病毒传播的对策的挑战,并限制了人们之间的最小距离,这是最有效的策略之一。因此,能够监视所谓社会距离的自治系统的实施引起了极大的兴趣。在本文中,我们旨在解决此任务,该任务利用没有其他深度传感器的单个RGB框架。与现有的单像替代方案相反,当无法获得地面定位时失败,我们依靠单像深度估计来感知观察到的场景的3D结构并估算人们之间的距离。在设置阶段,一个直接的校准过程,即使在消费者智能手机上也可以利用比例吸引的SLAM算法,使我们能够解决影响单图像深度估计的规模歧义。我们通过室内和室外图像验证了我们的方法,该图像采用校准的激光雷达 + RGB相机资产来验证我们的方法。实验结果强调,我们的建议可以对人际距离进行足够可靠的估计,以有效地监测社会距离。这一事实证实,尽管具有适当驱动的单像深度估计,但它的固有歧义可以是其他深度感知技术的可行替代方法,更昂贵,并且在实际应用中并不总是可行的。我们的评估还强调,即使在纯CPU系统上,我们的框架也可以与竞争对手相当快速,相当地运行。此外,它在低功率系统上的实际部署即将到来。

The recent pandemic emergency raised many challenges regarding the countermeasures aimed at containing the virus spread, and constraining the minimum distance between people resulted in one of the most effective strategies. Thus, the implementation of autonomous systems capable of monitoring the so-called social distance gained much interest. In this paper, we aim to address this task leveraging a single RGB frame without additional depth sensors. In contrast to existing single-image alternatives failing when ground localization is not available, we rely on single image depth estimation to perceive the 3D structure of the observed scene and estimate the distance between people. During the setup phase, a straightforward calibration procedure, leveraging a scale-aware SLAM algorithm available even on consumer smartphones, allows us to address the scale ambiguity affecting single image depth estimation. We validate our approach through indoor and outdoor images employing a calibrated LiDAR + RGB camera asset. Experimental results highlight that our proposal enables sufficiently reliable estimation of the inter-personal distance to monitor social distancing effectively. This fact confirms that despite its intrinsic ambiguity, if appropriately driven single image depth estimation can be a viable alternative to other depth perception techniques, more expensive and not always feasible in practical applications. Our evaluation also highlights that our framework can run reasonably fast and comparably to competitors, even on pure CPU systems. Moreover, its practical deployment on low-power systems is around the corner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源