论文标题
缺乏规律性和没有Ambrosetti-Rabinowitz条件的分数Orlicz问题的基态和淋巴结溶液
Ground state and nodal solutions for fractional Orlicz problems with lack of regularity and without the Ambrosetti-Rabinowitz condition
论文作者
论文摘要
我们考虑了由分数orlicz g-laplace操作员驱动的非本地shrödinger问题,如下所示\ begin {qore {equination} \ label {pp}( - \ triangle_ {g})^αu+g(u)= k(u)= k(x) \ Mathbb {r}^{d},\ tag {p} \ end {qore}其中$ d \ geq 3,\( - \ triangle_ {g})^α$是分数orlicz g-laplace Operator,$ \ mathbb {r} $是一个可测量的函数,$ k $是一个积极的连续功能。采用Nehari歧管方法,并且不假设众所周知的Ambrosetti-Rabinowitz和在非线性项$ f $上的可不同性条件,我们证明问题\ eqref {pp}具有固定符号的基础状态和节点(或签名)解决方案。
We consider a non-local Shrödinger problem driven by the fractional Orlicz g-Laplace operator as follows \begin{equation}\label{PP} (-\triangle_{g})^αu+g(u)=K(x)f(x,u),\ \ \text{in}\ \mathbb{R}^{d},\tag{P} \end{equation} where $d\geq 3,\ (-\triangle_{g})^α$ is the fractional Orlicz g-Laplace operator, $f:\mathbb{R}^d\times\mathbb{R}\rightarrow \mathbb{R}$ is a measurable function and $K$ is a positive continuous function. Employing the Nehari manifold method and without assuming the well-known Ambrosetti-Rabinowitz and differentiability conditions on the non-linear term $f$, we prove that the problem \eqref{PP} has a ground state of fixed sign and a nodal (or sign-changing) solutions.