论文标题
加权投影品种的本地和全球高度
Local and Global Heights on Weighted Projective Varieties
论文作者
论文摘要
我们通过卡地亚和Weil除数调查了局部和全球加权高度A-la Weil,用于加权投影空间,并扩展了加权投影空间上加权高度的定义,从Arxiv:1902.06563:加权品种和封闭的亚地区。我们证明,加权品种上的任何线条捆绑包都承认本地加权$ m $ mmetric。利用这个事实,我们为加权射击空间及其封闭的亚物种的加权品种定义了本地和全球加权高度,并显示其基本属性。
We investigate local and global weighted heights a-la Weil for weighted projective spaces via Cartier and Weil divisors and extend the definition of weighted heights on weighted projective spaces from arXiv:1902.06563 to weighted varieties and closed subvarieties. We prove that any line bundle on a weighted variety admits a locally bounded weighted $M$-metric. Using this fact, we define local and global weighted heights for weighted varieties in weighted projective spaces and their closed subschemes and show their fundamental properties.