论文标题

KSM型Fano流形的乘数赫尔米尼 - 因斯坦指标

Multiplier Hermitian-Einstein metrics on Fano manifolds of KSM-type

论文作者

Nakagawa, Yasuhiro, Nakamura, Satoshi

论文摘要

在本文中,我们重点介绍了Mabuchi引入的乘数Hermitian-Einstein指标,其中包括Kähler-Einstein指标,Kähler-Icci Solitons和Mabuchi Solitons作为特殊情况。我们还专注于KSM-Manifolds,这是第一作者作为曲折束引入的,目的是建立一个以KSM-DATA为单位的乘数Hermitian-Einstein指标存在的标准。通过使用连续连接Kähler-ricci soliton和mabuchi Soliton的连续路径来构建一个乘数Hermitian-Einstein指标的KSM-Manifold的明确示例。

In this article we focus on multiplier Hermitian-Einstein metrics introduced by Mabuchi which include Kähler-Einstein metrics, Kähler-Ricci solitons and Mabuchi solitons as special cases. We also focus on KSM-manifolds, which are introduced by the first author as toric bundles, to establish a criterion for the existence of multiplier Hermitian-Einstein metrics in terms of KSM-data. An explicit example for a KSM-manifold admitting a family of multiplier Hermitian-Einstein metrics is constructed by using a continuous path connecting a Kähler-Ricci soliton and a Mabuchi soliton.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源