论文标题

中子星M-R关系中具有机器学习支持的群集结构

Cluster Structures with Machine Learning Support in Neutron Star M-R relations

论文作者

Lobato, R. V., Chimanski, E. V., Bertulani, C. A.

论文摘要

中子星(NS)是具有强力场的紧凑物体,并且物质组成受到极端物理条件的影响。在超高密度和温度下强烈相互作用物质的特性对我们的理解和建模工具构成了巨大挑战。一些困难是至关重要的,因为一个人无法在我们的实验室中复制此类条件,也不能仅从天文学观察中评估它们。我们拥有有关中子星际内饰的信息通常是间接提取的,例如,从星质量 - 拉迪乌斯的关系中提取。质量和半径是全球量,仍然存在明显的不确定性,这在研究中子恒星内部的微物理学方面导致了很大的差异。这留下了许多关于核天体物理学和NS状态(EOS)方程的问题。最近,新的观察结果似乎限制了大摩擦,因此有助于解决一些开放的问题。在这项工作中,利用现代机器学习技术,我们分析了NS Mass-Radius(M-R)的关系,其中一组包含各种物理模型的EOS。我们的目标是通过M-R数据分析来确定模式,并开发工具,以了解即将出版的作品中中子星的EOS。

Neutron stars (NS) are compact objects with strong gravitational fields, and a matter composition subject to extreme physical conditions. The properties of strongly interacting matter at ultra-high densities and temperatures impose a big challenge to our understanding and modelling tools. Some difficulties are critical, since one cannot reproduce such conditions in our laboratories or assess them purely from astronomical observations. The information we have about neutron star interiors are often extracted indirectly, e.g., from the star mass-radius relation. The mass and radius are global quantities and still have a significant uncertainty, which leads to great variability in studying the micro-physics of the neutron star interior. This leaves open many questions in nuclear astrophysics and the suitable equation of state (EoS) of NS. Recently, new observations appear to constrain the mass-radius and consequently has helped to close some open questions. In this work, utilizing modern machine learning techniques, we analyze the NS mass-radius (M-R) relationship for a set of EoS containing a variety of physical models. Our objective is to determine patterns through the M-R data analysis and develop tools to understand the EoS of neutron stars in forthcoming works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源