论文标题

树突状沉积的连续限

Continuum Limit of Dendritic Deposition

论文作者

Jacobson, Daniel, Miller III, Thomas F.

论文摘要

连续模型通常用于研究从非平衡统计力学到电池研究的田地中的树突沉积。然而,即使在简化的布朗颗粒沉积在一个小的反应性簇上的简化情况下,这些模型的基础近似值也很少理解。具体而言,该系统在临界半径上从紧凑的树突形态过渡,取决于粒径。但是在模拟连续体(天颗粒)极限时,临界半径不会通过纯连续分析重现标度。这种差异表明,连续模型可能无法捕获树突形成的微观物理学,从而引起了对其实验相关性的怀疑。为了阐明树突状沉积的连续限制,在这里,我们使用布朗动力学模拟重新检查了布朗粒子系统的临界半径缩放。与过去的研究相比,我们探测了更大的系统大小,在某些情况下,我们的颗粒多达数亿个颗粒,并采用改进的表面反应范式。这种范式使我们能够收集模拟并使用明确定义的物理参数。我们的结果表明,临界半径缩放实际上与连续分析一致,从而验证了对树突状沉积建模的连续性方法。但是,布朗粒子系统会缓慢收敛到其连续限制。结果,当将连续模型应用于更复杂的沉积过程时,连续近似本身可能是重要的误差源。

Continuum models are commonly used to study dendritic deposition in fields ranging from nonequilibrium statistical mechanics to battery research. However, the continuum approximation underlying these models is poorly understood, even in the simplified case of Brownian particles depositing onto a small, reactive cluster. Specifically, this system transitions from a compact to a dendritic morphology at a critical radius that depends on the particle size. But in simulations of the continuum (small-particle) limit, the critical radius does not reproduce the scaling predicted by a purely continuum analysis. This discrepancy suggests that continuum models may not be able to capture the microscopic physics of dendrite formation, raising doubts about their experimental relevance. To clarify the continuum limit of dendritic deposition, here, we reexamine the critical radius scaling of the Brownian particle system using Brownian dynamics simulations. Compared to past studies, we probe larger system sizes, up to hundreds of millions of particles in some cases, and adopt an improved paradigm for the surface reaction. This paradigm allows us to converge our simulations and to work with well-defined physical parameters. Our results show that the critical radius scaling is, in fact, consistent with the continuum analysis, validating the continuum approach to modeling dendritic deposition. Nonetheless, the Brownian particle system converges to its continuum limit slowly. As a result, when applying continuum models to more complex deposition processes, the continuum approximation itself may be a significant source of error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源