论文标题
在序列上$ n! \ bmod p $
On the sequence $n! \bmod p$
论文作者
论文摘要
我们证明,序列$ 1!,2!,\ dots $至少产生$(\ sqrt {2} + o(1))\ sqrt {p} $不同的残基modulo modulo prime $ p $。此外,在间隔$ \ MATHCAL上进行段落,长度$ n> p^{7/8 + \ varepsilon} $的长度$ n> p -n> p -n> p -n> p -p^{0,1,\ dots,p -1 \} $至少产生$(1 + o(1 + o(1 + o(1 + o(1 + sqrt),作为推论,我们证明每个非零残留类都可以表示为七个阶乘$ n_1的产品! \ dots n_7!$ modulo $ p $,其中$ n_i = o(p^{6/7+\ varepsilon})$ for All $ i = 1,\ dots,7 $,可在先前的结果上提供多项式改进。
We prove, that the sequence $1!, 2!, 3!, \dots$ produces at least $(\sqrt{2} + o(1))\sqrt{p}$ distinct residues modulo prime $p$. Moreover, factorials on an interval $\mathcal{I} \subseteq \{0, 1, \dots, p - 1\}$ of length $N > p^{7/8 + \varepsilon}$ produce at least $(1 + o(1))\sqrt{p}$ distinct residues modulo $p$. As a corollary, we prove that every non-zero residue class can be expressed as a product of seven factorials $n_1! \dots n_7!$ modulo $p$, where $n_i = O(p^{6/7+\varepsilon})$ for all $i=1,\dots,7$, which provides a polynomial improvement upon the preceding results.