论文标题

自适应随机MPC在未知的噪声分布下

Adaptive Stochastic MPC under Unknown Noise Distribution

论文作者

Stamouli, Charis, Tsiamis, Anastasios, Morari, Manfred, Pappas, George J.

论文摘要

在本文中,在未知的噪声分布下,我们解决了线性系统的随机MPC(SMPC)问题,受偶然状态约束和硬输入约束。首先,我们将机会状态约束重新制定为确定性约束,仅取决于明确的噪声统计。基于这些重新制定的约束,我们为已知噪声统计的理想设置设计了一个稳健且稳定的基准SMPC算法。然后,我们采用此基准控制器来得出一种新颖的稳定自适应SMPC方案,该方案在线学习了必要的噪声统计数据,同时保证了对未知的重新印象状态限制的满意度,其可能性很高。后者是通过使用依赖经验噪声统计数据的置信区间来实现的,并且随着时间的流逝而均匀地有效。此外,随着收集更多的噪声样本,鉴于估计的重新重新制定约束的在线适应,控制性能会随着时间的流逝而提高,并获得了更好的噪声统计估计。此外,在跟踪具有多个连续目标的问题时,我们的方法与基于强大的管子MPC相比,导致在线增强的吸引力领域。 DC-DC转换器的数值模拟用于证明开发方法的有效性。

In this paper, we address the stochastic MPC (SMPC) problem for linear systems, subject to chance state constraints and hard input constraints, under unknown noise distribution. First, we reformulate the chance state constraints as deterministic constraints depending only on explicit noise statistics. Based on these reformulated constraints, we design a distributionally robust and robustly stable benchmark SMPC algorithm for the ideal setting of known noise statistics. Then, we employ this benchmark controller to derive a novel robustly stable adaptive SMPC scheme that learns the necessary noise statistics online, while guaranteeing time-uniform satisfaction of the unknown reformulated state constraints with high probability. The latter is achieved through the use of confidence intervals which rely on the empirical noise statistics and are valid uniformly over time. Moreover, control performance is improved over time as more noise samples are gathered and better estimates of the noise statistics are obtained, given the online adaptation of the estimated reformulated constraints. Additionally, in tracking problems with multiple successive targets our approach leads to an online-enlarged domain of attraction compared to robust tube-based MPC. A numerical simulation of a DC-DC converter is used to demonstrate the effectiveness of the developed methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源