论文标题
$ l^2 $ -superitical nls方程的归一化解决方案在紧凑的度量图上
Normalized solutions of $L^2$-supercritical NLS equations on compact metric graphs
论文作者
论文摘要
本文致力于在紧凑型公制图上存在规定的质量的非平凡结合状态。该研究基于一种一般的变分原理,该原理将单调性技巧和最小值定理与二阶信息结合在一起,以及对有规定的质量和有限的摩尔斯索引对结合状态进行爆炸分析。
This paper is devoted to the existence of non-trivial bound states of prescribed mass for the mass-supercritical nonlinear Schrödinger equation on compact metric graphs. The investigation is based upon a general variational principle which combines the monotonicity trick and a min-max theorem with second order information, and upon the blow-up analysis of bound states with prescribed mass and bounded Morse index.