论文标题
Autoopt:一个自动设计具有多种结构的元启发式优化算法的一般框架
AutoOpt: A General Framework for Automatically Designing Metaheuristic Optimization Algorithms with Diverse Structures
论文作者
论文摘要
元硫素化学被广泛认识到不符合常规求解器的严格数学假设的硬问题。元启发式算法的自动设计为缓解手动设计工作的有吸引力的途径,并增强了人为算法的增强性能。然而,当前自动化设计管道中的特定算法原型和线性算法表示限制了固定算法结构内的设计,这阻碍了元神经家族中发现新颖性和多样性的设计。为了应对这一挑战,本文提出了一个通用框架Autoopt,用于自动设计具有多种结构的元启发式算法。 Autoopt包含三个创新:(i)一种一般算法原型,致力于尽可能广泛地覆盖元神经家族。它通过完全发现全家人的潜力和新颖性来促进有关不同问题的高质量自动设计。 (ii)定向的无环图算法表示,以适合所提出的原型。它的灵活性和发展性使在单个设计中发现各种算法结构,从而促进了找到高性能算法的可能性。 (iii)一个图表嵌入方法,可提供要操纵的图形的替代紧凑形式,从而确保自动的一般性。关于数字函数和实际应用的实验验证了自动POOPT的效率和实用性。
Metaheuristics are widely recognized gradient-free solvers to hard problems that do not meet the rigorous mathematical assumptions of conventional solvers. The automated design of metaheuristic algorithms provides an attractive path to relieve manual design effort and gain enhanced performance beyond human-made algorithms. However, the specific algorithm prototype and linear algorithm representation in the current automated design pipeline restrict the design within a fixed algorithm structure, which hinders discovering novelties and diversity across the metaheuristic family. To address this challenge, this paper proposes a general framework, AutoOpt, for automatically designing metaheuristic algorithms with diverse structures. AutoOpt contains three innovations: (i) A general algorithm prototype dedicated to covering the metaheuristic family as widely as possible. It promotes high-quality automated design on different problems by fully discovering potentials and novelties across the family. (ii) A directed acyclic graph algorithm representation to fit the proposed prototype. Its flexibility and evolvability enable discovering various algorithm structures in a single run of design, thus boosting the possibility of finding high-performance algorithms. (iii) A graph representation embedding method offering an alternative compact form of the graph to be manipulated, which ensures AutoOpt's generality. Experiments on numeral functions and real applications validate AutoOpt's efficiency and practicability.