论文标题
Sentinel-2多年,多国家基准数据集,用于作物分类和细分,深度学习
A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning
论文作者
论文摘要
在这项工作中,我们介绍了Sen4Agrinet,这是一个基于Sentinel-2的时间序列多国家基准数据集,该数据集是针对机器和深度学习的农业监测应用程序量身定制的。 SEN4AGRINET数据集是从通过土地包裹识别系统(LPI)收集的农民声明中注释的,用于协调全国广泛的标签。这些声明直到最近才作为开放数据提供,这是第一次从地面真相数据中标记卫星图像。我们将根据食品和农业组织(FAO)指示性农作物分类计划提出并标准化欧洲的新作物类型分类法,该分类法(CAP)需求解决共同的农业政策(CAP)需求。 Sen4agrinet是唯一包含所有光谱信息的多国多年数据集。它的构建是为了涵盖加泰罗尼亚和法国的2016 - 2020年期间,而可以扩展到包括其他国家 /地区。目前,它包含4250万个包裹,这使其比其他可用档案更大。我们提取两个子数据集,以突出其对各种深度学习应用的价值;对象汇总数据集(OAD)和补丁组装的数据集(PAD)。 OAD资本化每个包裹的区域统计信息,从而为分类算法创建一个强大的标签对功能实例。另一方面,PAD结构将分类问题推广到包裹提取,语义分割和标记。在三种不同的情况下对PAD和OAD进行了检查,以展示和建模不同年份和不同国家的空间和时间变异性的影响。
In this work we introduce Sen4AgriNet, a Sentinel-2 based time series multi country benchmark dataset, tailored for agricultural monitoring applications with Machine and Deep Learning. Sen4AgriNet dataset is annotated from farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing country wide labels. These declarations have only recently been made available as open data, allowing for the first time the labeling of satellite imagery from ground truth data. We proceed to propose and standardise a new crop type taxonomy across Europe that address Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset that includes all spectral information. It is constructed to cover the period 2016-2020 for Catalonia and France, while it can be extended to include additional countries. Currently, it contains 42.5 million parcels, which makes it significantly larger than other available archives. We extract two sub-datasets to highlight its value for diverse Deep Learning applications; the Object Aggregated Dataset (OAD) and the Patches Assembled Dataset (PAD). OAD capitalizes zonal statistics of each parcel, thus creating a powerful label-to-features instance for classification algorithms. On the other hand, PAD structure generalizes the classification problem to parcel extraction and semantic segmentation and labeling. The PAD and OAD are examined under three different scenarios to showcase and model the effects of spatial and temporal variability across different years and different countries.