论文标题

矩阵上交换环作为较高权力的总和

Matrices over commutative rings as sum of higher powers

论文作者

Muangma, Kunlathida, Rodtes, Kijti

论文摘要

关于矩阵在交换戒指上的矩阵问题上,有资格表达的矩阵提供了一些痕量条件,以$ k $ th的权力为$ k = 2,3,4,5,6,6,7,8 $在几种文献中。在本文中,我们为矩阵提供类似的条件,以$ k = 9,10,11,12,12,13,14,15,16 $的$ k $ th powers。

On the Waring's problems for matrices over a commutative ring, there are some trace conditions provided for matrices eligibly expressed as a sum of $k$-th powers with $k=2,3,4,5,6,7,8$ in several literatures. In this paper, we provide the similar conditions for matrices written as a sum of $k$-th powers with $k=9,10,11,12,13,14,15,16$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源