论文标题

电价预测:机器学习的曙光

Electricity Price Forecasting: The Dawn of Machine Learning

论文作者

Jędrzejewski, Arkadiusz, Lago, Jesus, Marcjasz, Grzegorz, Weron, Rafał

论文摘要

电价预测(EPF)是电气工程,统计,计算机科学和金融界面的预测分支,该分支是预测整个水平范围的批发电力市场价格。这些范围从几分钟(实时/盘中拍卖以及连续交易)到几天(日本拍卖),到数周,几个月甚至几年(交易和非处方交易期货和远期合同)。在过去的25年中,各种方法和计算工具已应用于盘中和日常EPF。直到2010年代初,该领域一直由相对较小的线性回归模型和(人工)神经网络主导,通常不超过二十个输入。随着时间的流逝,更多的数据和更多的计算能力将获得。在专家知识不足以管理复杂结构的情况下,这些模型变得更大。反过来,这导致了在这个快速发展且引人入胜的领域中引入机器学习(ML)技术。在这里,我们提供了截至2022年的主要趋势和EPF模型的概述。

Electricity price forecasting (EPF) is a branch of forecasting on the interface of electrical engineering, statistics, computer science, and finance, which focuses on predicting prices in wholesale electricity markets for a whole spectrum of horizons. These range from a few minutes (real-time/intraday auctions and continuous trading), through days (day-ahead auctions), to weeks, months or even years (exchange and over-the-counter traded futures and forward contracts). Over the last 25 years, various methods and computational tools have been applied to intraday and day-ahead EPF. Until the early 2010s, the field was dominated by relatively small linear regression models and (artificial) neural networks, typically with no more than two dozen inputs. As time passed, more data and more computational power became available. The models grew larger to the extent where expert knowledge was no longer enough to manage the complex structures. This, in turn, led to the introduction of machine learning (ML) techniques in this rapidly developing and fascinating area. Here, we provide an overview of the main trends and EPF models as of 2022.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源