论文标题

改善Baumgarte-Shapiro-Shibata-Nakamura公式的二进制中子星合并模拟的收敛顺序

Improving the convergence order of binary neutron star merger simulations in the Baumgarte-Shapiro-Shibata-Nakamura formulation

论文作者

Raithel, Carolyn A., Paschalidis, Vasileios

论文摘要

二进制中子星合并的高准确性数值相对性模拟是构建引力波形模板以分析和解释紧凑型物体合并的观察结果的必要成分。在这种模拟的合并后阶段的数值收敛是通过许多现代代码实现的挑战。在本文中,我们研究了两种改善Baumgarte-Shapiro-Shibata-Nakamura nakamura baumgarte star合并模拟的收敛性能的方式,以爱因斯坦方程式。我们表明,该公式中特定约束阻尼方案中的不连续性会破坏模拟后的合并后收敛性。相比之下,连续处方可确保融合直到深层。我们还研究了状态参数化方程对模拟前后收敛性的影响。特别是,我们比较了分段多蚀参数化的结果,该参数通常在合并模拟中使用,但在声速中遭受非物理不连续性的影响,而结果使用“广义”分段的多层参数化,该参数旨在确保状态方程的连续性和不同状态的连续性。我们报告重力波和任何虚假的合并前加热的差异,具体取决于使用状态参数化方程。

High-accuracy numerical relativity simulations of binary neutron star mergers are a necessary ingredient for constructing gravitational waveform templates to analyze and interpret observations of compact object mergers. Numerical convergence in the post-merger phase of such simulations is challenging to achieve with many modern codes. In this paper, we study two ways of improving the convergence properties of binary neutron star merger simulations within the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's equations. We show that discontinuities in a particular constraint damping scheme in this formulation can destroy the post-merger convergence of the simulation. A continuous prescription, in contrast, ensures convergence until late times. We additionally study the impact of the equation of state parametrization on the pre- and post-merger convergence properties of the simulations. In particular, we compare results for a piecewise polytropic parametrization, which is commonly used in merger simulations but suffers unphysical discontinuities in the sound speed, with results using a "generalized" piecewise polytropic parametrization, which was designed to ensure both continuity and differentiability of the equation of state. We report on the differences in the gravitational waves and any spurious pre-merger heating, depending on which equation of state parametrization is used.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源