论文标题
OPH围绕163131的高度沉降磁盘
A highly settled disk around Oph 163131
论文作者
论文摘要
原星盘中部平面中的高尘埃密度有利于有效的晶粒生长,并且可以在磁盘消散之前快速形成行星和行星。压力最大值中的垂直沉降和尘埃捕获是两种机制,使尘埃集中在几何薄和高密度区域。在这项工作中,我们旨在研究这些机制在高度倾斜的原始磁盘SSTC2D J163131.2-242627(OPH163131,I〜84DEG)中。我们提出了OPH163131的新的高角度分辨率连续体和12CO ALMA观测值。与尘埃发射相比,气体发射在垂直和径向方向上显着扩展,与垂直沉降以及可能的径向漂移一致。此外,新的连续观测显示了两个清晰的环。位于〜100 au的外环在观测值中得到很好的解决,这使我们能够对毫米灰尘颗粒的垂直范围进行严格的约束。我们使用辐射转移对盘进行建模,发现毫米大小的晶粒的尺度高度为0.5AU或从中央恒星的100AU处为0.5AU。该值大约比以前的建模约束的较小微米大小的尘埃晶粒的尺度高度大约一个数量级,这意味着大晶粒的有效沉降发生在磁盘中。在采用参数灰尘沉降处方时,我们发现观察值与100AU时的湍流粘度系数一致。最后,我们发现在OPH163131中测得的薄尘尺高度有利于卵石积聚的行星生长:即使在超过50AU的轨道中,10 m_earth行星也可能在小于10 MYR之内生长。
High dust density in the midplane of protoplanetary disks is favorable for efficient grain growth and can allow fast formation of planetesimals and planets, before disks dissipate. Vertical settling and dust trapping in pressure maxima are two mechanisms allowing dust to concentrate in geometrically thin and high density regions. In this work, we aim to study these mechanisms in the highly inclined protoplanetary disk SSTC2D J163131.2-242627 (Oph163131, i~84deg). We present new high angular resolution continuum and 12CO ALMA observations of Oph163131. The gas emission appears significantly more extended in the vertical and radial direction compared to the dust emission, consistent with vertical settling and possibly radial drift. In addition, the new continuum observations reveal two clear rings. The outer ring, located at ~100 au, is well resolved in the observations, which allows us to put stringent constraints on the vertical extent of millimeter dust particles. We model the disk using radiative transfer and find that the scale height of millimeter sized grains is 0.5au or less at 100au from the central star. This value is about one order of magnitude smaller than the scale height of smaller micron-sized dust grains constrained by previous modeling, which implies that efficient settling of the large grains is occurring in the disk. When adopting a parametric dust settling prescription, we find that the observations are consistent with a turbulent viscosity coefficient of about alpha<=10^-5 at 100au. Finally, we find that the thin dust scale height measured in Oph163131 is favorable for planetary growth by pebble accretion: a 10 M_Earth planet may grow within less than 10 Myr, even in orbits exceeding 50au.