论文标题

半毛病:半监督公平代表性学习与对​​抗性变异自动编码器

Semi-FairVAE: Semi-supervised Fair Representation Learning with Adversarial Variational Autoencoder

论文作者

Wu, Chuhan, Wu, Fangzhao, Qi, Tao, Huang, Yongfeng

论文摘要

对抗性学习是公平表示学习中广泛使用的技术,可以从数据表示中消除敏感属性的偏见。通常需要将敏感属性标签纳入预测目标。但是,在许多情况下,许多样品的敏感属性标签可能是未知的,并且很难根据具有观察到的属性标签的稀缺数据来训练强大的歧视器,这可能会导致产生不公平的表示。在本文中,我们提出了一种基于对抗性变异自动编码器的半监督公平表示学习方法,该方法可以减少对抗性公平模型对具有标记敏感属性的数据的依赖性。更具体地说,我们使用偏见的模型来通过准确预测输入数据中的敏感属性来捕获有关敏感属性的固有偏见信息,并且我们使用无偏见的模型通过使用对抗性学习来从中删除偏见信息来学习偏见的公平表示。两个模型学到的隐藏表示形式正式化为正交。此外,将这两个模型预测的软标签进一步集成到半监督的变异自动编码器中以重建输入数据,我们应用了一个额外的熵正则化,以鼓励从无偏见模型推断为高渗透性的属性标签。这样,偏见感知模型可以更好地捕获属性信息,而无偏见模型在敏感属性上的歧视性较小,如果输入数据已很好地重构。在两个数据集上进行的大量实验验证了我们的方法可以在有限的数据中获得良好的表示学公道,并具有敏感属性标签。

Adversarial learning is a widely used technique in fair representation learning to remove the biases on sensitive attributes from data representations. It usually requires to incorporate the sensitive attribute labels as prediction targets. However, in many scenarios the sensitive attribute labels of many samples can be unknown, and it is difficult to train a strong discriminator based on the scarce data with observed attribute labels, which may lead to generate unfair representations. In this paper, we propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder, which can reduce the dependency of adversarial fair models on data with labeled sensitive attributes. More specifically, we use a bias-aware model to capture inherent bias information on sensitive attribute by accurately predicting sensitive attributes from input data, and we use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them. The hidden representations learned by the two models are regularized to be orthogonal. In addition, the soft labels predicted by the two models are further integrated into a semi-supervised variational autoencoder to reconstruct the input data, and we apply an additional entropy regularization to encourage the attribute labels inferred from the bias-free model to be high-entropy. In this way, the bias-aware model can better capture attribute information while the bias-free model is less discriminative on sensitive attributes if the input data is well reconstructed. Extensive experiments on two datasets for different tasks validate that our approach can achieve good representation learning fairness under limited data with sensitive attribute labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源