论文标题

指导图像产生的边际对比对应

Marginal Contrastive Correspondence for Guided Image Generation

论文作者

Zhan, Fangneng, Yu, Yingchen, Wu, Rongliang, Zhang, Jiahui, Lu, Shijian, Zhang, Changgong

论文摘要

基于示例的图像翻译建立了条件输入和一个示例之间(来自两个不同域)之间的密集对应关系,以利用详细的示例样式来实现现实的图像翻译。现有工作通过将两个域之间的特征距离最小化,从而构建了跨域对应关系。如果不明确开发域不变特征,这种方法可能无法有效地减少域间隙,从而通常会导致次优的对应关系和图像翻译。我们设计了一个边缘对比学习网络(MCL-NET),该网络探讨了对比度学习,以学习基于现实的示例图像翻译的学习域不变特征。具体而言,我们设计了一种创新的边缘对比损失,该损失指导着明确建立密集的对应关系。然而,仅凭域名语义的构建对应关系可能会损害纹理模式并导致质地降解。因此,我们设计了一个自我相关图(SCM),该图将场景结构结合在一起,作为辅助信息,可大大改善构建对应关系。在多种图像翻译任务上进行的定量和定性实验表明,所提出的方法始终优于最新方法。

Exemplar-based image translation establishes dense correspondences between a conditional input and an exemplar (from two different domains) for leveraging detailed exemplar styles to achieve realistic image translation. Existing work builds the cross-domain correspondences implicitly by minimizing feature-wise distances across the two domains. Without explicit exploitation of domain-invariant features, this approach may not reduce the domain gap effectively which often leads to sub-optimal correspondences and image translation. We design a Marginal Contrastive Learning Network (MCL-Net) that explores contrastive learning to learn domain-invariant features for realistic exemplar-based image translation. Specifically, we design an innovative marginal contrastive loss that guides to establish dense correspondences explicitly. Nevertheless, building correspondence with domain-invariant semantics alone may impair the texture patterns and lead to degraded texture generation. We thus design a Self-Correlation Map (SCM) that incorporates scene structures as auxiliary information which improves the built correspondences substantially. Quantitative and qualitative experiments on multifarious image translation tasks show that the proposed method outperforms the state-of-the-art consistently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源