论文标题

基于虹膜表现攻击检测的频率,很少射击一级域的适应

Few-shot One-class Domain Adaptation Based on Frequency for Iris Presentation Attack Detection

论文作者

Li, Yachun, Lian, Ying, Wang, Jingjing, Chen, Yuhui, Wang, Chunmao, Pu, Shiliang

论文摘要

IRIS呈现攻击检测(PAD)取得了杰出的成功,以确保虹膜识别系统的可靠性和安全性。大多数现有方法利用空间域中的判别特征,并在数据集设置内报告出色的性能。但是,在跨数据库环境下,绩效的降解是不可避免的,遭受了领域的转变。考虑到现实世界中的应用,很容易访问少数真正的样本。因此,我们定义了一种称为少量单级域适应(FODA)的新域适应设置,其中适应仅依赖于有限数量的目标核心样品。为了解决这个问题,我们提出了一个基于频率信息的表达能力的新型FODA框架。具体而言,我们的方法通过两个建议的模块整合了与频率相关的信息。基于频率的注意模块(FAM)将频率信息汇总到空间注意力中,并明确强调高频细颗粒特征。频率混合模块(FMM)混合了某些频率组件,以生成大规模的目标样品,以适应有限的目标核心样品。 Livdet-IRIS 2017数据集的广泛实验表明,在交叉数据库和数据集设置下,提出的方法可以实现最先进或竞争性能。

Iris presentation attack detection (PAD) has achieved remarkable success to ensure the reliability and security of iris recognition systems. Most existing methods exploit discriminative features in the spatial domain and report outstanding performance under intra-dataset settings. However, the degradation of performance is inevitable under cross-dataset settings, suffering from domain shift. In consideration of real-world applications, a small number of bonafide samples are easily accessible. We thus define a new domain adaptation setting called Few-shot One-class Domain Adaptation (FODA), where adaptation only relies on a limited number of target bonafide samples. To address this problem, we propose a novel FODA framework based on the expressive power of frequency information. Specifically, our method integrates frequency-related information through two proposed modules. Frequency-based Attention Module (FAM) aggregates frequency information into spatial attention and explicitly emphasizes high-frequency fine-grained features. Frequency Mixing Module (FMM) mixes certain frequency components to generate large-scale target-style samples for adaptation with limited target bonafide samples. Extensive experiments on LivDet-Iris 2017 dataset demonstrate the proposed method achieves state-of-the-art or competitive performance under both cross-dataset and intra-dataset settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源