论文标题
估计可分离匹配模型
Estimating Separable Matching Models
论文作者
论文摘要
在本文中,我们提出了两种简单的方法,以估算Galichon和Salanié中引入的可转移和可分离实用程序的匹配模型(2022)。第一种方法是最小距离估计器,该估计器依赖于匹配的广义熵。第二个依赖于更特别但流行的Choo and Siow(2006)模型的重新制定;它使用具有双向固定效果的通用线性模型(GLM)。
In this paper we propose two simple methods to estimate models of matching with transferable and separable utility introduced in Galichon and Salanié (2022). The first method is a minimum distance estimator that relies on the generalized entropy of matching. The second relies on a reformulation of the more special but popular Choo and Siow (2006) model; it uses generalized linear models (GLMs) with two-way fixed effects.