论文标题
Aggine Springer纤维杆孔的对应
The affine Springer fiber-sheaf correspondence
论文作者
论文摘要
鉴于一个还原群的循环中的半元素元素,我们在兰兰兹双重组的三角通勤的部分分辨率上构建了准共捆的捆。该构建使用仿射弹簧理论,可以被认为是3D镜对称性的化身。对于组$ gl_n $,相应的部分分辨率为$ \ mathrm {hilb}^n(\ mathbb {c}^\ times \ times \ times \ times \ times \ mathbb {c})$。我们还考虑对均质元素的这种结构进行量化。
Given a semisimple element in the loop Lie algebra of a reductive group, we construct a quasi-coherent sheaf on a partial resolution of the trigonometric commuting variety of the Langlands dual group. The construction uses affine Springer theory and can be thought of as an incarnation of 3d mirror symmetry. For the group $GL_n$, the corresponding partial resolution is $\mathrm{Hilb}^n(\mathbb{C}^\times\times \mathbb{C})$. We also consider a quantization of this construction for homogeneous elements.