论文标题
充满粒子湍流的动力学。部分1:惯性颗粒调制的湍流调节
Dynamics of particle-laden turbulent Couette flow. Part1: Turbulence modulation by inertial particles
论文作者
论文摘要
在充满颗粒的湍流中,载流相相中的湍流会受到超过$ 10^{ - 4} $的分散粒子相的影响,因此反向耦合或双向耦合在该体积分数方面相关。在Muramulla $ et.Al。^1 $的最新研究中,在垂直粒子的湍流通道流中观察到湍流强度的不连续降低,以临界体积分数O($ 10^{ - 3} $)。发现湍流强度的崩溃是灾难性降低湍流能源产生速率的结果。从机械上讲,含有粒子湍流的coutter-Flow中的粒子流体耦合与封闭的通道流中的粒子耦合不同。在本文中,通过双向耦合的DNS探索了惯性颗粒的湍流调节,其中粒子体积分数($ ϕ $)从$ 1.75 \ times10^{ - 4} $到$ 1.05 \ times105 \ times10^{ - 3} $ and ynolds wall($ ynolds wall)($ $ $ $ $ uttect)( ($re_Δ$)是$ 750 $。粒子是基于$Δ/u $代表的流体积分时间尺度的$ st \ sim367 $的重点粒子。在关键体积分数$ ϕ_ {CR} \ sim7.875 \ times10^{ - 4} $之外,观察到流体湍流强度,均值速度和雷诺压力的不连续下降。湍流的剪切产生的急剧减少和湍流动能的粘性耗散的减少是发生类似于Channelflow的不连续过渡的两个重要现象。逐步的颗粒注入和逐步去除研究证实,颗粒的存在主要落后于这种不连续的过渡。
In particle-laden turbulent flows the turbulence in carrier fluid phase gets affected by the dispersed particle phase for volume fraction above $10^{-4}$ and hence reverse coupling or two-way coupling becomes relevant in that volume fraction regime. In a recent study by Muramulla $et.al.^1$, a discontinuous decrease of turbulence intensity is observed in a vertical particle-laden turbulent channel-flow for a critical volume fraction O($10^{-3}$). The collapse of turbulent intensity is found out to be a result of catastrophic reduction of turbulent energy production rate. Mechanistically, particle-fluid coupling in particle-laden turbulent Couette-flow differs from that in a closed channel flow. In this article, the turbulence modulation in Couette-flow by inertial particles is explored through two-way coupled DNS where particle volume fraction ($ϕ$) is varied from $1.75\times10^{-4}$ to $1.05\times10^{-3}$ and Reynolds Number based on half-channel width ($δ$) and wall velocity ($U$) ($Re_δ$) is $750$. The particles are heavy point particles with $St\sim367$ based on fluid integral time-scale represented by $δ/U$. A discontinuous decrease of fluid turbulence intensity, mean square velocity and Reynolds stress is observed beyond a critical volume fraction $ϕ_{cr}\sim7.875\times10^{-4}$. The drastic reduction of shear production of turbulence and in turn the reduction of viscous dissipation of turbulent kinetic energy are two important phenomena for the occurrence of discontinuous transition similar to channelflow. The step-wise particle injection and step-wise removal study confirms that it is the presence of particles which is majorly behind this discontinuous transition.