论文标题

部分可观测时空混沌系统的无模型预测

Nonperturbative Determination of Collins-Soper Kernel from Quasi Transverse-Momentum Dependent Wave Functions

论文作者

Chu, Min-Huan, Deng, Zhi-Fu, Hua, Jun, Ji, Xiangdong, Schäfer, Andreas, Su, Yushan, Sun, Peng, Wang, Wei, Yang, Yi-Bo, Zeng, Jun, Zhang, Jialu, Zhang, Jian-Hui, Zhang, Qi-An

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a lattice calculation of the Collins-Soper kernel which governs the rapidity evolution of transverse-momentum-dependent (TMD) distributions. We first obtain the quasi TMD wave functions at three different meson momenta on a lattice with valence clover quarks on a dynamical HISQ sea and lattice spacing $a=0.12$~fm from MILC, and renormalize the pertinent linear divergences using Wilson loops. Through one-loop matching to the light-cone wave functions, we determine the Collins-Soper kernel with transverse separation up to 0.6~fm. We study the systematic uncertainties from operator mixing and scale dependence, as well as the impact from higher power corrections. Our results potentially allow for a determination of the soft function and other transverse-momentum dependent quantities at one-loop accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源