论文标题

部分可观测时空混沌系统的无模型预测

Measuring Diagnostic Test Performance Using Imperfect Reference Tests: A Partial Identification Approach

论文作者

Obradović, Filip

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Diagnostic tests are almost never perfect. Studies quantifying their performance use knowledge of the true health status, measured with a reference diagnostic test. Researchers commonly assume that the reference test is perfect, which is often not the case in practice. When the assumption fails, conventional studies identify "apparent" performance or performance with respect to the reference, but not true performance. This paper provides the smallest possible bounds on the measures of true performance - sensitivity (true positive rate) and specificity (true negative rate), or equivalently false positive and negative rates, in standard settings. Implied bounds on policy-relevant parameters are derived: 1) Prevalence in screened populations; 2) Predictive values. Methods for inference based on moment inequalities are used to construct uniformly consistent confidence sets in level over a relevant family of data distributions. Emergency Use Authorization (EUA) and independent study data for the BinaxNOW COVID-19 antigen test demonstrate that the bounds can be very informative. Analysis reveals that the estimated false negative rates for symptomatic and asymptomatic patients are up to 3.17 and 4.59 times higher than the frequently cited "apparent" false negative rate. Further applicability of the results in the context of imperfect proxies such as survey responses and imputed protected classes is indicated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源