论文标题

基于深度学习的模型预测重点点火引擎的预测控制

Deep Learning based Model Predictive Control for Compression Ignition Engines

论文作者

Norouzi, Armin, Shahpouri, Saeid, Gordon, David, Winkler, Alexander, Nuss, Eugen, Abel, Dirk, Andert, Jakob, Shahbakhti, Mahdi, Koch, Charles Robert

论文摘要

本文使用机器学习(ML)和非线性模型预测控制器(NMPC)来最大程度地减少压缩点火引擎的排放和燃油消耗。在此工作中,机器学习以两种方法应用。在第一个应用程序中,ML用于确定模型预测性控制优化问题中实现的模型。在第二个应用程序中,ML用作NMPC的替代,其中ML控制器通过模仿或模仿模型预测控制器的行为来学习最佳控制动作。在这项研究中,使用了包括长期任期内存(LSTM)层在内的深层复发网络来对工业4.5升4缸康明斯柴油发动机的排放和性能进行建模。然后将该模型用于模型预测控制器实现。然后,部署了深度学习方案,以克隆开发控制器的行为。在LSTM集成中,通过在NMPC优化问题中增强网络的隐藏状态和细胞状态来使用一种新的方案。在经过实验验证的发动机仿真平台中,将开发的LSTM-NMPC和模仿NMPC与康明斯校准的发动机控制单元(ECU)模型进行了比较。结果表明,氮氧化物(\ nox)的排放显着降低,并且在保持相同的负载的同时,注入的燃料量略有下降。此外,模仿的NMPC具有与NMPC相似的性能,但计算时间降低了两个数量级。

Machine learning (ML) and a nonlinear model predictive controller (NMPC) are used in this paper to minimize the emissions and fuel consumption of a compression ignition engine. In this work machine learning is applied in two methods. In the first application, ML is used to identify a model for implementation in model predictive control optimization problems. In the second application, ML is used as a replacement of the NMPC where the ML controller learns the optimal control action by imitating or mimicking the behavior of the model predictive controller. In this study, a deep recurrent neural network including long-short term memory (LSTM) layers are used to model the emissions and performance of an industrial 4.5 liter 4-cylinder Cummins diesel engine. This model is then used for model predictive controller implementation. Then, a deep learning scheme is deployed to clone the behavior of the developed controller. In the LSTM integration, a novel scheme is used by augmenting hidden and cell states of the network in an NMPC optimization problem. The developed LSTM-NMPC and the imitative NMPC are compared with the Cummins calibrated Engine Control Unit (ECU) model in an experimentally validated engine simulation platform. Results show a significant reduction in Nitrogen Oxides (\nox) emissions and a slight decrease in the injected fuel quantity while maintaining the same load. In addition, the imitative NMPC has a similar performance as the NMPC but with a two orders of magnitude reduction of the computation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源