论文标题
基于深度学习的模型预测重点点火引擎的预测控制
Deep Learning based Model Predictive Control for Compression Ignition Engines
论文作者
论文摘要
本文使用机器学习(ML)和非线性模型预测控制器(NMPC)来最大程度地减少压缩点火引擎的排放和燃油消耗。在此工作中,机器学习以两种方法应用。在第一个应用程序中,ML用于确定模型预测性控制优化问题中实现的模型。在第二个应用程序中,ML用作NMPC的替代,其中ML控制器通过模仿或模仿模型预测控制器的行为来学习最佳控制动作。在这项研究中,使用了包括长期任期内存(LSTM)层在内的深层复发网络来对工业4.5升4缸康明斯柴油发动机的排放和性能进行建模。然后将该模型用于模型预测控制器实现。然后,部署了深度学习方案,以克隆开发控制器的行为。在LSTM集成中,通过在NMPC优化问题中增强网络的隐藏状态和细胞状态来使用一种新的方案。在经过实验验证的发动机仿真平台中,将开发的LSTM-NMPC和模仿NMPC与康明斯校准的发动机控制单元(ECU)模型进行了比较。结果表明,氮氧化物(\ nox)的排放显着降低,并且在保持相同的负载的同时,注入的燃料量略有下降。此外,模仿的NMPC具有与NMPC相似的性能,但计算时间降低了两个数量级。
Machine learning (ML) and a nonlinear model predictive controller (NMPC) are used in this paper to minimize the emissions and fuel consumption of a compression ignition engine. In this work machine learning is applied in two methods. In the first application, ML is used to identify a model for implementation in model predictive control optimization problems. In the second application, ML is used as a replacement of the NMPC where the ML controller learns the optimal control action by imitating or mimicking the behavior of the model predictive controller. In this study, a deep recurrent neural network including long-short term memory (LSTM) layers are used to model the emissions and performance of an industrial 4.5 liter 4-cylinder Cummins diesel engine. This model is then used for model predictive controller implementation. Then, a deep learning scheme is deployed to clone the behavior of the developed controller. In the LSTM integration, a novel scheme is used by augmenting hidden and cell states of the network in an NMPC optimization problem. The developed LSTM-NMPC and the imitative NMPC are compared with the Cummins calibrated Engine Control Unit (ECU) model in an experimentally validated engine simulation platform. Results show a significant reduction in Nitrogen Oxides (\nox) emissions and a slight decrease in the injected fuel quantity while maintaining the same load. In addition, the imitative NMPC has a similar performance as the NMPC but with a two orders of magnitude reduction of the computation time.