论文标题
在现场占用模型中具有异质性
On site occupancy models with heterogeneity
论文作者
论文摘要
定位占用模型通常用于估计从具有重复采样场所的地点收集的丰度或存在的存在数据中存在物种存在的可能性。在过去的二十年中,已经开发了广泛的占用模型,但是很少有人注意检查异质性在参数估计中的影响。这项研究的重点是在检测强度和存在概率中存在异质性的占用模型。我们表明,如果忽略检测异质性,将会低估存在概率。另一方面,如果在存在概率中忽略了异质性,则行为是不同的。值得注意的是,根据检测和存在概率之间的关系,对平均存在概率的估计可能是公正或过度估计的。另外,当检测强度中的异质性与协变量有关时,我们提出了一种有条件的可能性方法来估计检测强度参数。该替代方法具有最佳的估计功能属性,并确保了与在持有概率上的模型规范的鲁棒性。然后,我们提出了一个平均存在概率的一致估计器,前提是正确指定了检测强度组件模型。我们说明了模拟研究和实际数据分析中的偏差效应和估计效果。
Site occupancy models are routinely used to estimate the probability of species presence from either abundance or presence-absence data collected across sites with repeated sampling occasions. In the last two decades, a broad class of occupancy models has been developed, but little attention has been given to examining the effects of heterogeneity in parameter estimation. This study focuses on occupancy models where heterogeneity is present in detection intensity and the presence probability. We show that the presence probability will be underestimated if detection heterogeneity is ignored. On the other hand, the behavior is different if heterogeneity in the presence probability is ignored; notably, an estimate of the average presence probability may be unbiased or over- or under-estimated depending on the relationship between detection and presence probabilities. In addition, when heterogeneity in the detection intensity is related to covariates, we propose a conditional likelihood approach to estimate the detection intensity parameters. This alternative method shares an optimal estimating function property and it ensures robustness against model specification on the presence probability. We then propose a consistent estimator for the average presence probability, provided that the detection intensity component model is correctly specified. We illustrate the bias effects and estimator performance in simulation studies and real data analysis.