论文标题
来自单个校准图像的球3D定位
Ball 3D Localization From A Single Calibrated Image
论文作者
论文摘要
球队运动中的Ball 3D本地化具有各种应用,包括足球中的自动越位检测,或在篮球中射门释放定位。如今,该任务要么通过使用昂贵的多视图设置来解决,要么通过将分析限制为弹道轨迹来解决。在这项工作中,我们建议通过估计像素中的球直径并使用米中真实球直径的知识来从校准的单眼相机上的单个图像上解决任务。这种方法适用于球(甚至部分)可见的任何游戏情况。为了实现这一目标,我们使用了一个小型神经网络,该网络在传统球探测器产生的候选物周围进行了训练。除了预测球直径外,我们的网络还输出了在图像贴片中拥有球的信心。 3个篮球数据集的验证表明,我们的模型对BALL 3D定位提供了显着的预测。另外,通过其置信输出,我们的模型通过过滤检测器产生的候选物来提高检测率。这项工作的贡献是(i)第一个解决单个图像上3D球定位的模型,(ii)从单个校准图像中对球3D注释的有效方法,(iii)从单个角度注释的高质量3D球评估数据集。此外,在https://github.com/gabriel-vanzandycke/deepsport中免费提供了复制此研究的代码。
Ball 3D localization in team sports has various applications including automatic offside detection in soccer, or shot release localization in basketball. Today, this task is either resolved by using expensive multi-views setups, or by restricting the analysis to ballistic trajectories. In this work, we propose to address the task on a single image from a calibrated monocular camera by estimating ball diameter in pixels and use the knowledge of real ball diameter in meters. This approach is suitable for any game situation where the ball is (even partly) visible. To achieve this, we use a small neural network trained on image patches around candidates generated by a conventional ball detector. Besides predicting ball diameter, our network outputs the confidence of having a ball in the image patch. Validations on 3 basketball datasets reveals that our model gives remarkable predictions on ball 3D localization. In addition, through its confidence output, our model improves the detection rate by filtering the candidates produced by the detector. The contributions of this work are (i) the first model to address 3D ball localization on a single image, (ii) an effective method for ball 3D annotation from single calibrated images, (iii) a high quality 3D ball evaluation dataset annotated from a single viewpoint. In addition, the code to reproduce this research is be made freely available at https://github.com/gabriel-vanzandycke/deepsport.