论文标题

机器意识和人工超智能的认知架构:思想是通过迭代性更新的构建

A Cognitive Architecture for Machine Consciousness and Artificial Superintelligence: Thought Is Structured by the Iterative Updating of Working Memory

论文作者

Reser, Jared Edward

论文摘要

本文提供了一个分析框架,用于如何模拟计算机内的类似人类的思维过程。它描述了如何将注意力和记忆构建,更新和使用以搜索思想流的关联添加。重点是复制哺乳动物工作记忆系统的动力学,该系统具有两种形式的持续活动:持续的射击(保留有关秒数的信息)和突触增强(将信息从分钟数到数小时)。本文使用一系列图形来系统地展示这些工作记忆店的迭代更新如何为行为,认知和意识提供功能组织。 在机器学习实施中,这两个内存商店应以迭代方式连续更新。这意味着每个状态都应在状态之前保留一定比例的共同表示形式(其中每个表示都是神经网络节点的集合)。这使每个状态都是上述状态的修订版,并导致连续的配置与它们所包含的信息重叠和融合。因此,工作记忆中的一组概念将随着时间的推移逐渐发展。随着持续活动在整个分层网络中传播激活能量,搜索长期记忆以添加最合适的表示形式时,状态之间的过渡发生。结果是一系列能够朝着解决方案或目标前进的联想联系的中间状态。迭代更新在此概念化为信息处理策略,工作记忆模型,意识理论以及用于设计和编程人工智能的算法(AI,AGI和ASI)。

This article provides an analytical framework for how to simulate human-like thought processes within a computer. It describes how attention and memory should be structured, updated, and utilized to search for associative additions to the stream of thought. The focus is on replicating the dynamics of the mammalian working memory system, which features two forms of persistent activity: sustained firing (preserving information on the order of seconds) and synaptic potentiation (preserving information from minutes to hours). The article uses a series of figures to systematically demonstrate how the iterative updating of these working memory stores provides functional organization to behavior, cognition, and awareness. In a machine learning implementation, these two memory stores should be updated continuously and in an iterative fashion. This means each state should preserve a proportion of the coactive representations from the state before it (where each representation is an ensemble of neural network nodes). This makes each state a revised iteration of the preceding state and causes successive configurations to overlap and blend with respect to the information they contain. Thus, the set of concepts in working memory will evolve gradually and incrementally over time. Transitions between states happen as persistent activity spreads activation energy throughout the hierarchical network, searching long-term memory for the most appropriate representation to be added to the global workspace. The result is a chain of associatively linked intermediate states capable of advancing toward a solution or goal. Iterative updating is conceptualized here as an information processing strategy, a model of working memory, a theory of consciousness, and an algorithm for designing and programming artificial intelligence (AI, AGI, and ASI).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源