论文标题

通过核规范正规化的系统识别

System Identification via Nuclear Norm Regularization

论文作者

Sun, Yue, Oymak, Samet, Fazel, Maryam

论文摘要

本文研究了通过汉克尔核规范正规化识别低阶线性系统的问题。汉克(Hankel)正则化鼓励汉克尔基质(Hankel Matrix)的低级别,该矩阵映射到系统的低阶度。我们为这种正则化提供了新颖的统​​计分析,并将其与未注册的普通最小二乘(OLS)估计量进行了仔细对比。我们的分析导致了估计脉冲响应和与线性系统相关的Hankel矩阵的新界限。我们首先设计了一种输入激发,并表明Hankel正则化使人们能够使用真实系统顺序中的最佳观测值恢复系统,并实现强大的统计估计率。令人惊讶的是,我们通过显示诸如I.I.D.之类的直观选择来证明输入设计确实很重要。高斯输入导致可证明的亚最佳样品复杂性。为了更好地了解正则化的好处,我们还重新审视了OLS估计器。除了完善现有界限外,我们还可以在实验上确定何时正规化方法改善OLS:(1)对于脉冲缓慢响应衰减的低阶系统,OLS方法在样本复杂性方面的性能较差,(2)由正则化返回的Hankel Matrix具有更明显的奇数差距,从而使系统顺序更加明确,从而更加识别系统序列(3)HankEl正常化的敏感范围是敏感的。最后,我们通过联合列车验证程序建立模型选择保证,在该程序中,我们调整正规化参数以进行近乎最佳的估计。

This paper studies the problem of identifying low-order linear systems via Hankel nuclear norm regularization. Hankel regularization encourages the low-rankness of the Hankel matrix, which maps to the low-orderness of the system. We provide novel statistical analysis for this regularization and carefully contrast it with the unregularized ordinary least-squares (OLS) estimator. Our analysis leads to new bounds on estimating the impulse response and the Hankel matrix associated with the linear system. We first design an input excitation and show that Hankel regularization enables one to recover the system using optimal number of observations in the true system order and achieve strong statistical estimation rates. Surprisingly, we demonstrate that the input design indeed matters, by showing that intuitive choices such as i.i.d. Gaussian input leads to provably sub-optimal sample complexity. To better understand the benefits of regularization, we also revisit the OLS estimator. Besides refining existing bounds, we experimentally identify when regularized approach improves over OLS: (1) For low-order systems with slow impulse-response decay, OLS method performs poorly in terms of sample complexity, (2) Hankel matrix returned by regularization has a more clear singular value gap that ease identification of the system order, (3) Hankel regularization is less sensitive to hyperparameter choice. Finally, we establish model selection guarantees through a joint train-validation procedure where we tune the regularization parameter for near-optimal estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源