论文标题

声学特异性钢琴速度估计

Acoustics-specific Piano Velocity Estimation

论文作者

Simonetta, Federico, Ntalampiras, Stavros, Avanzini, Federico

论文摘要

出于最先进的心理学研究的激励,我们注意到,使用现有的自动音乐转录(AMT)方法转录的钢琴表演就无法成功地重新合成,而不会影响性能的艺术内容。这是由于1)不同乐器使用的MIDI参数之间的不同映射,以及2)音乐家适应周围声学环境的方式。为了面对这个问题,我们提出了一种方法来构建声学特定的AMT系统,该系统能够对音乐家的适应性进行建模来传达其解释。具体而言,我们在模块化体系结构中量身定制的虚拟仪器模型,该模型将音频录制和相对对齐的音乐得分作为输入,并输出每个音符的声学特定速度。我们测试不同的模型形状,并表明所提出的方法通常优于通常考虑仪器和声学环境的特殊性的通常的AMT管道。有趣的是,这种方法可以简单地扩展,因为仅需要轻微的努力来训练模型来推断其他钢琴参数,例如踩踏。

Motivated by the state-of-art psychological research, we note that a piano performance transcribed with existing Automatic Music Transcription (AMT) methods cannot be successfully resynthesized without affecting the artistic content of the performance. This is due to 1) the different mappings between MIDI parameters used by different instruments, and 2) the fact that musicians adapt their way of playing to the surrounding acoustic environment. To face this issue, we propose a methodology to build acoustics-specific AMT systems that are able to model the adaptations that musicians apply to convey their interpretation. Specifically, we train models tailored for virtual instruments in a modular architecture that takes as input an audio recording and the relative aligned music score, and outputs the acoustics-specific velocities of each note. We test different model shapes and show that the proposed methodology generally outperforms the usual AMT pipeline which does not consider specificities of the instrument and of the acoustic environment. Interestingly, such a methodology is extensible in a straightforward way since only slight efforts are required to train models for the inference of other piano parameters, such as pedaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源