论文标题

CSI反馈的深度联合源通道编码:端到端方法

Deep Joint Source-Channel Coding for CSI Feedback: An End-to-End Approach

论文作者

Xu, Jialong, Ai, Bo, Wang, Ning, Chen, Wei

论文摘要

MIMO技术带来的吞吐量增加依赖于基站(BS)中获得的渠道状态信息(CSI)的知识。为了使CSI的反馈开销负担得起MIMO技术的发展(例如,MIMO和超质量MIMO),引入了深度学习(DL)来处理CSI压缩任务。基于现有通信系统中的分离原理,基于DL的CSI压缩用作源编码。但是,这种单独的源通道编码(SSCC)方案不如有限的区块长度制度中的联合源通道编码(JSCC)方案。在本文中,我们建议基于CSI反馈任务的基于深的联合源通道编码(DJSCC)框架。特别是,提出的方法可以同时从CSI源和无线通道中学习。我们没有在现有方法中延迟域中的傅立叶变换来截断CSI,而是应用非线性变换网络来压缩CSI。此外,我们采用SNR适应机制来处理无线通道变化。广泛的实验证明了拟议框架的有效性,适应性和一般性。

The increased throughput brought by MIMO technology relies on the knowledge of channel state information (CSI) acquired in the base station (BS). To make the CSI feedback overhead affordable for the evolution of MIMO technology (e.g., massive MIMO and ultra-massive MIMO), deep learning (DL) is introduced to deal with the CSI compression task. Based on the separation principle in existing communication systems, DL based CSI compression is used as source coding. However, this separate source-channel coding (SSCC) scheme is inferior to the joint source-channel coding (JSCC) scheme in the finite blocklength regime. In this paper, we propose a deep joint source-channel coding (DJSCC) based framework for the CSI feedback task. In particular, the proposed method can simultaneously learn from the CSI source and the wireless channel. Instead of truncating CSI via Fourier transform in the delay domain in existing methods, we apply non-linear transform networks to compress the CSI. Furthermore, we adopt an SNR adaption mechanism to deal with the wireless channel variations. The extensive experiments demonstrate the validity, adaptability, and generality of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源